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Frequency, wavevector, polarization and phase are degrees 
of freedom that are often used to describe a photonic system. 
Over the past few years, topology — a property of a photonic 

material that characterizes the quantized global behaviour of the 
wavefunctions on its entire dispersion band — has emerged as 
another indispensable degree of freedom, thus opening a path 
towards the discovery of fundamentally new states of light and pos-
sible revolutionary applications. Potential practical applications of 
topological photonics include photonic circuitry that is less depend-
ent on isolators and slow light that is insensitive to disorder.

Topological ideas in photonics branch from exciting develop-
ments in solid-state materials, along with the discovery of new 
phases of matter called topological insulators1,2. Topological insula-
tors, being insulating in the bulk, conduct electricity on their sur-
face without dissipation or back-scattering, even in the presence of 
large impurities. The first example of this was the integer quantum 
Hall effect, discovered in 1980. In quantum Hall states, two-dimen-
sional (2D) electrons in a uniform magnetic field form quantized 
cyclotron orbits of discrete energies called Landau levels. When 
the electron energy sits within the energy gap between the Landau 
levels, the measured edge conductance remains constant within an 
accuracy of around one part in a billion, regardless of sample size, 
composition and purity. In 1988, Haldane proposed a theoretical 
model for achieving the same phenomenon in a periodic system 
without Landau levels3 — the quantum anomalous Hall effect.

In 2005, Haldane and Raghu transferred the key feature of this 
electronic model to the realm of photonics4,5. They theoretically 
proposed the photonic analogue of the quantum (anomalous) Hall 
effect in photonic crystals6 (the periodic variation of optical mate-
rials that affects photons in the same manner as solids modulate 
electrons). Three years later, this idea was confirmed by Wang et al., 
who provided realistic material designs7 and experimental observa-
tions8. These studies spurred numerous subsequent theoretical9–13 
and experimental investigations14–16.

In ordinary waveguides, back-reflection is a major source of 
unwanted feedback and loss that hinders large-scale optical integra-
tion. The works cited above demonstrate that unidirectional edge 
waveguides transmit electromagnetic waves without back-reflection 
even in the presence of arbitrarily large disorder. This is an ideal 
transport property that is unprecedented in photonics. Topological 
photonics promises to offer unique, robust designs and new device 
functionalities for photonic systems by providing immunity to 
performance degradation induced by fabrication imperfections or 
environmental changes.
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The application of topology, the mathematics of conserved properties under continuous deformations, is creating a range of 
new opportunities throughout photonics. This field was inspired by the discovery of topological insulators, in which interfacial 
electrons transport without dissipation, even in the presence of impurities. Similarly, the use of carefully designed wavevector-
space topologies allows the creation of interfaces that support new states of light with useful and interesting properties. In par-
ticular, this suggests unidirectional waveguides that allow light to flow around large imperfections without back-reflection. This 
Review explains the underlying principles and highlights how topological effects can be realized in photonic crystals, coupled 
resonators, metamaterials and quasicrystals.

In this Review, we present the key concepts, experiments and 
proposals in the field of topological photonics. Starting with an 
introduction to the relevant topological concepts, we introduce the 
2D quantum Hall phase through the stability of Dirac cones4,5, fol-
lowed by its realizations in gyromagnetic photonic crystals7,8,13, cou-
pled resonators9,10,16 and waveguides15, bianisotropic metamaterials11 
and quasicrystals14. We then extend our discussion to three dimen-
sions, wherein we describe the stability of line nodes and Weyl points 
and their associated surface states12. We conclude by considering the 
outlook for further theoretical and technological advances.

Topological phase transition
Topology is the branch of mathematics concerned with quantities 
that are preserved under continuous deformations. For example, the 
six objects in Fig. 1a all have different geometries, but there are only 
three different topologies. The sphere can be continuously changes  
into the spoon, so they are topologically equivalent. The torus and 
coffee cup are also topologically equivalent, and so too are the dou-
ble torus and tea pot. Different topologies can be mathematically 
characterized by integers called topological invariants — quanti-
ties that remain constant under arbitrary continuous deforma-
tions of the system. For the above closed surfaces, the topological 
invariant is its genus, which corresponds to the number of holes 
within a closed surface. Objects with the same topological invari-
ant are topologically equivalent; that is, they are in the same topo-
logical phase. Only when a hole is created or removed in the object 
does the topological invariant change. This process is known as a 
topological phase transition.

Topologies for material systems in photonics are defined on the 
dispersion bands in reciprocal (wavevector) space. The topological 
invariant of a 2D dispersion band is the Chern number (C, Box 1), 
a quantity that characterizes the quantized collective behaviour of 
the wavefunctions on the band. Once a physical observable can be 
written as a topological invariant, it changes only discretely; thus, it 
will not respond to continuous small perturbations. These perturba-
tions can be arbitrary continuous changes in the system parameters.

Optical mirrors reflect light of a given frequency range, due to 
the lack of available optical states inside the mirror. Thus, the fre-
quency gaps of a mirror are analogous to the energy gaps of an 
insulator. The sum of the Chern numbers of the dispersion bands 
below the frequency gap indicates the topology of the mirror. This 
can be understood as the total number of ‘twists’ and ‘untwists’ of 
the system up to the gap frequency. Ordinary mirrors like air (total 
internal reflection), metal or Bragg reflectors all have zero Chern 

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. *e-mail: linglu@mit.edu

REVIEW ARTICLE
PUBLISHED ONLINE: 26 OCTOBER 2014 | DOI: 10.1038/NPHOTON.2014.248

© 2014 Macmillan Publishers Limited. All rights reserved

mailto:linglu@mit.edu
http://www.nature.com/doifinder/10.1038/nphoton.2014.248


822 NATURE PHOTONICS | ADVANCE ONLINE PUBLICATION | www.nature.com/naturephotonics

numbers, which makes them topologically trivial. Mirrors with 
non-zero Chern numbers are topologically non-trivial.

The most fascinating and peculiar phenomena take place at the 
interface between two mirrors with different topological invariants. 
The edge waveguide formed by these two topologically inequiva-
lent mirrors (Fig. 1b, right) is topologically distinct from an ordi-
nary waveguide, which is formed between topologically equivalent 
mirrors (Fig. 1b, left). The distinction lies in the frequency spectra 
of their edge modes inside the bulk frequency gap. On the left of 
Fig. 1c, the two frequency bands both have zero Chern numbers, 
so they can directly connect across the interface without closing 
the frequency gap. However, when the two mirrors have different 
Chern numbers, topology does not allow them to connect to each 
other directly. A topological phase transition must take place at the 
interface: this requires it to close the frequency gap, neutralize the 
Chern numbers, then reopen the gap. This phase transition (Fig. 1c, 
right), ensures gapless frequency states at the interface: there must 
exist edge states at all frequencies within the gap of the bulk mir-
rors. The gapless spectra of the edge states are topologically pro-
tected; that is, their existence is guaranteed by the difference of the 
topologies of the bulk materials on the two sides. In general, the 
number of gapless edge modes equals the difference of the bulk 
topological invariants across the interface. This is known as the 
bulk-edge correspondence.

The topological protection of edge waveguides can also be under-
stood in reciprocal space. Figure 1d shows the dispersion diagrams 

of both ordinary (left) and gapless (right) waveguides. On the left, the 
ordinary waveguide dispersion is disconnected from the bulk bands 
and can be continuously moved out of the frequency gap into the 
bulk bands. On the right, however, the gapless waveguide dispersion 
connects the bulk frequency bands above and below the frequency 
gap. It cannot be moved out of the gap by changing the edge termi-
nations. Similar comparisons between the edge band diagrams are 
shown in Fig. 2. The only way to alter these connectivities is through 
a topological phase transition; that is, closing and reopening the bulk 
frequency gap.

The unidirectionality of the protected waveguide modes can be 
seen from the slopes (group velocities) of the waveguide dispersions. 
An ordinary waveguide (Fig. 1d, left) supports bidirectional modes 
because it back-scatters at imperfections. In contrast, a topologically 
protected gapless waveguide (Fig. 1d, right) is unidirectional as it 
has only positive (or only negative) group velocities. In addition, 
there are no counter-propagating modes at the same frequencies as 
the one-way edge modes. This enables light to flow around imper-
fections with perfect transmission — the light can only go forwards. 
The operating bandwidth of such a one-way waveguide is as large as 
the size of the bulk frequency gap.

From Dirac cones to quantum Hall topological phase
One effective approach for finding non-trivial mirrors (frequency 
gaps with non-zero Chern numbers) is to identify the phase tran-
sition boundaries of the system in the topological phase diagram, 
where the bulk frequency spectrum is gapless. Correct tuning of 
the system parameters thus open gaps that belong to different topo-
logical phases. In 2D periodic systems, these phase boundaries are 
point-degeneracies in the bandstructure. The most fundamental 
2D point degeneracy is a pair of Dirac cones with linear disper-
sions between two bands. In three dimensions, the degeneracies 
involve line nodes and Weyl points, which we will discuss later in 
this Review.

Dirac cones are protected, in the entire 2D Brillouin zone, by 
by ‘PT symmetry’, which is the product of time-reversal sym-
metry (T, Box 2) and parity (P) inversion. Every Dirac cone has a 
quantized Berry phase (Box 1) of π looped around it17,18. Protected 
Dirac cones generate and annihilate in pairs19–23. The effec-
tive Hamiltonian close to a Dirac point in the x–y plane can be 
expressed by H(k) = vxkxσx + vykyσz, where vi are the group veloci-
ties and σi are the Pauli matrices. Diagonalization leads to the solu-
tion ω(k)  =  ±√(vx

2kx
2  +  vy

2ky
2). Although both P and T map the 

Hamiltonian from k to −k, they differ by a complex conjugation: 
(PT) H(k) (PT)−1 = H(k)*. PT symmetry requires the Hamiltonian to 
be real and thus absent of σy, which is imaginary. A 2D Dirac point-
degeneracy can be lifted by any perturbation that is proportional 
to σy in the Hamiltonian or, equivalently, by any perturbation that 
breaks PT. Therefore, breaking either P or T will open a bandgap 
between the two bands.

However, the bandgaps opened by breaking P24 and T individu-
ally are topologically inequivalent5,25, as the bulk bands in these two 
cases carry different Chern numbers. The Chern number is the inte-
gration of the Berry curvature (F(k) in Table B1) on a closed surface 
in wavevector space. F(k) is a pseudovector that is odd under T but 
even under P. In the presence of both P and T, F(k) = 0. When either 
P or T is broken, the Dirac cones open and each degeneracy-lifting 
contributes a Berry flux of magnitude π to each of the bulk bands. 
In the presence of T (P broken), F(k) = −F(−k). The Berry flux con-
tributed by one pair of Dirac points at k and −k are of opposite signs. 
Integration over the whole 2D Brillouin zone always equals zero, 
and thus so do the Chern numbers. In contrast, in the presence of P 
(T broken), F(k) = F(−k). Here, the total Berry flux adds up to 2π 
and the Chern number equals one. More pairs of Dirac cones can 
lead to higher Chern numbers13. This T-breaking 2D quantum Hall 
topological phase is shown in red in the phase diagram of Fig. 2.
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Figure 1 | Topological phase transition. a, Six objects of different 
geometries can be grouped into three pairs of topologies. Each pair has the 
same topological invariant, known as its genus. b, Two waveguides formed 
by mirrors of different (right) and same (left) topologies. c, Frequency 
bands of different topologies cannot transition into each other without 
closing the frequency gap. A topological phase transition takes place on 
the right, but not on the left. d, Interfacial states have different connectivity 
with the bulk bands, depending on the band topologies of the bulk mirrors. 
Here, a is the period of the waveguide propagating along y, and ΔC is the 
change in Chern number between the corresponding bulk bands on the 
right and left of the waveguide. The magnitude of ΔC equals the number 
of gapless interfacial modes and the sign of ΔC indicates the direction 
of propagation.
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Gyromagnetic photonic crystals
Wang  et  al. were the first to realize the photonic analogue of the 
quantum Hall effect at microwave frequencies8. Their experiment 
broke T by applying a uniform magnetic field on gyromagnetic 
photonic crystals, resulting in a single topologically protected edge 
mode that propagated around arbitrary disorder without reflection.

Such single-mode one-way waveguides can be realized in cou-
pled defect cavities26, self-guide27 in free-standing slabs28 and have 
a robust local density of states29. They have enabled novel device 
designs for tunable delays and phase shifts with unity transmission7, 
reflectionless waveguide bends and splitters30, signal switches31, 
directional filters32,33, broadband circulators34 and slow-light wave-
guides35. Very recently, multimode one-way waveguides of large bulk 
Chern numbers (|C| = 2, 3, 4) have been theoretically discovered by 
opening gaps of multiple point degeneracies simultaneously13, thus 
providing even richer possibilities in terms of device functionalities.

Wang  et  al. based their experiments8 on a 2D square lattice 
photonic crystal comprising an array of gyromagnetic ferrite rods 
confined vertically between two metallic plates to mimic the 2D 
transverse magnetic (TM) modes. They also added a metal wall to 

the surrounding edges to prevent radiation loss into air (Fig. 3a). 
Without the external magnetic field, the second and third TM bands 
are connected by a quadratic point-degeneracy comprising a pair 
of Dirac cones36. Under a uniform static magnetic field (0.2 T) that 
breaks T, anti-symmetric imaginary off-diagonal terms develop in 
the magnetic permeability tensor (μ). The quadratic degeneracy 
breaks and a complete bandgap forms between the second and 
third bands, which both have non-zero Chern numbers. The red 
dispersion line in Fig.  3b is the gapless edge state inside the sec-
ond bandgap, which has only positive group velocities at around 
4.5 GHz. Numerical simulation results (Fig. 3c, top) verified that an 
antenna inside the waveguide can only emit in the forward direction 
in the bulk frequency gap. The experimental transmission data in 
Fig. 3d shows that the backwards reflection is more than five orders 
of magnitude smaller than the forwards transmission after propa-
gating over only eight lattice periods. More importantly, there is no 
increase in the reflection amplitude even after the insertion of large 
metallic scatterers (Fig.  3c, bottom). Indeed, new one-way edge 
modes automatically form wherever a new interface is created, thus 
providing a path for light to circumvent the scatter. This is precisely 

A closed surface can be smoothly deformed into various 
geometries without cutting and pasting. The Gauss–Bonnet theo-
rem92 of equation (1) below, which connects geometry to topology, 
states that the total Gaussian curvatures (K) of a 2D closed surface 
is always an integer. This topological invariant, named genus (g), 
characterizes the topology of the surface; that is, the number of 
holes within. Examples of surfaces with different geni are shown 
in Fig. 1a.

 1
2π  dA = 2(1 – g)∫surface

 (1)

A two dimensional Brillouin zone is also a closed surface 
with the same topology of a torus due to its periodic bound-
ary conditions (Fig. B1). Table B1 lists the definitions93 of Berry 
curvature and Berry flux with respect to Bloch wavefunctions 
in the Brillouin zone by comparing them to the familiar case of 

magnetic field and magnetic flux in real space. Integrating the 
Berry curvature over the torus surface yields the topological 
invariant known as the ‘Chern number’, which gives a measure 
of the total quantized Berry flux of the 2D surface. The Chern 
number can be viewed as the number of monopoles of Berry 
flux inside a closed surface, as illustrated in Fig. B1. An efficient 
way to calculate Chern numbers in discretized Brillouin zones is 
described in ref. 94.

Topological invariants can be arbitrary integers ( ) or binary 
numbers ( 2, meaning  mod 2). Chern numbers are integers 
(C    ) and the sum of the Chern numbers over all bands of a 
given system is zero.

Historically, the geometric phase was first discovered in optics 
by Pancharatnam95 prior to the discovery of the Berry phase96. The 
first experiments demonstrating the Berry phase were performed 
in optical fibres97.
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Figure B1 | Chern number as the number of Berry monopoles in momentum space. A 2D Brillouin zone is topologically equivalent to a torus. The 
Chern number (C) can be viewed as the number of monopoles (charges) of Berry flux inside a closed 2D surface. The arrows represent Berry curvature 
from the positive and negative charges. In a 3D Brillouin zone, these monopoles are Weyl points.

Box 1 | Topological invariant.

Table B1 | Comparison of the Berry phase for Bloch wavefunctions and the Aharonov–Bohm phase.

Vector potential A(r) A(k) =   u(k)|i     |u(k)k Berry connection
Aharonov–Bohm phase  A(r) · dl A(k) · dl Berry phase
Magnetic field B(r) =      × A(r)r F(k) =     × A(k)k Berry curvature
Magnetic flux B(r) · ds∬ F(k) · ds∬ Berry flux
Magnetic monopoles # = ∯ B(r) · dse

h C =  ∯ F(k) · ds1
2π Chern number

The Berry connection measures the local change in phase of wavefunctions in momentum space, where i k is a Hermitian operator. Similar to the vector potential and Aharonov–Bohm phase, Berry 
connection and Berry phase are gauge dependent (that is, u(k) → eiϕ(k)u(k)). The rest of the quantities are gauge-invariant. The Berry phase is defined only up to multiples of 2π. The phase and flux can be 
connected through Stokes’ theorem. Here, u(k) is the spatially periodic part of the Bloch function; the inner product of  is done in real space. The one-dimensional Berry phase is also known as the Zak phase.
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the topological protection provided by the bulk of a photonic crystal 
that contains non-zero Chern numbers.

There are other types of one-way waveguides that break T 
(ref. 37), but these are not protected by topology. In general, mag-
netic responses are very weak in optical materials. Realization at 
optical frequencies therefore remains a challenge.

Coupled resonators
Photons in an array of coupled resonators are similar to electrons 
in an array of atoms in solids. The photon couplings between the 

resonators can be controlled to form topologically non-trivial 
frequency gaps with robust edge states. Researchers obtained the 
photonic analogues of the integer quantum Hall effect by construct-
ing both static and time-harmonic couplings that simulate the elec-
tron’s behaviour in a uniform magnetic field. When the T-breaking 
is implemented by accurate time-harmonic modulations, unidi-
rectional edge waveguides immune to disorder can be realized at 
optical frequencies.

In electronic systems, the first quantum Hall effect was observed 
in a 2D electron gas subject to an out-of-plane magnetic field. As 
illustrated in Fig. 4a, the bulk electrons undergo localized cyclotron 
motions, while the unidirectional edge electrons have an extended 
wavefunction. Again, the number of gapless edge channels equals the 
Chern number of the system. Here, the physical quantity describing 
the magnetic field is the vector potential, which can be written in 
the form A  =  Byx. An electron accumulates an Aharonov–Bohm 
(AB) phase of 

ϕ =  A(r) · dl

after a closed loop (see Table  B1). An electron going against the 
cyclotron motion acquires a phase of −ϕ (dotted circle in Fig. 4a), so 
it has a different energy (from the electrons moving in solid circles). 
The spin degeneracy of electrons is lifted by Zeeman splitting.

Although a photon does not interact with a magnetic field, it 
does acquire a phase change after passing through a closed loop. By 
carefully tuning the propagation and coupling phases, Hafezi et al. 
designed9 a lattice of optical resonators in which the photons acquire 
the same phase as the AB phase of electrons moving in a uniform 
magnetic field. This is different from a true quantum Hall topological 
phase, as T is not broken in their static and reciprocal resonator array. 
Thus, back-reflections are allowed because time-reversed channels 
always exist at the same frequencies. Nevertheless, Hafezi et al. were 
able to observe the edge states at near-infrared (1.55 μm) wavelengths 
in the first set of experiments performed on a silicon-on-insulator 
platform16, and in a recent experiment38 also showed that robustness 
against particular types of disorder can still be achieved owing to the 
topological features of the phase arrangements.

Figure 2 | Topological phase diagram of the 2D quantum Hall phase. 
The top-left image shows a band diagram of edge states in which the bulk 
dispersions form a pair of Dirac cones (grey) protected by PT symmetry. 
The green and blue lines represent edge dispersions on the top and bottom 
edges. When either P or T are broken, a bandgap can form in the bulk but 
not necessarily on the edges. When T-breaking is dominant, the two bulk 
bands split and acquire Chern numbers of ±1. Thus, there exists one gapless 
edge dispersion on each of the top and bottom interfaces, assuming the 
bulk is interfaced with topologically trivial mirrors. This T-breaking phase 
of non-zero Chern numbers is the quantum Hall phase, plotted in red in the 
phase diagram.
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Symmetry considerations are crucial when determining the 
possible topological phases of a system. For example, the quantum 
Hall phase requires the breaking of time-reversal symmetry (T). On 
the other hand, in the recently discovered 2D and 3D topological 
insulators in electronics, T-symmetry is required to protect these 
topological phases characterized by 2 topological invariants. For 
example, the 2D topological insulator, also known as the quantum 
spin Hall effect98, allows the coexistence of counter-propagating 
spin-polarized gapless edge states. Without T-symmetry, however, 
these edge states can scatter into each other. The edge energy spec-
trum opens a gap and the insulator can continuously connect to 
trivial insulators, such as the vacuum. A large table of symmetry-
protected topological phases have been theoretically classified73,74. 
These systems have robust interfacial states that are topologically 
protected only when the corresponding symmetries are present75.

Here we point out the fundamental difference in time-reversal 
symmetry between electrons and photons. A photon is a neu-
tral non-conserved non-interacting spin-1 Boson that satisfies 
Maxwell’s equations, whereas an electron is a charged conserved 
interacting spin-1 Fermion that satisfies Schrödinger’s equation. 
Similar to Schrödinger’s equation, the lossless Maxwell’s equations 
at non-zero frequencies can be written as a generalized Hermitian 
eigenvalue problem:

i = ω0
0 )) ))EH ))EH

∆

×
–

∆

×
є

µ )) χ
χ†

where ε†  =  ε, μ†  =  μ and χ is the bianisotropy term, where † is 
Hermitian conjugation.

The anti-unitary time T operator is given by:

K))10 0
–1

which squares to unity, where K is complex conjugation (*). When 
ε*  =  ε, μ*  =  μ and χ  =  −χ*, the system is T-invariant. Rotating 
the spin by 2π is the same as applying the T operator twice 
(T2). But T2 has different eigenvalues for photons (T2 = +1) and 
electrons (T2  =  −1). It is this minus sign that ensures Kramer’s 
degeneracies for electrons at T-invariant k points in the Brillouin 
zone, thus providing the possibility of gapless connectivity for 
edge dispersions in the bulk gap. This fundamental distinction 
results in different topological classifications for photons and 
electrons with respect to T. For example, photons do not have 
the same topological phases of 2D or 3D topological insulators 
protected by T as for electrons.

Box 2 | Time reversal symmetry.
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Figure 4b shows a 2D array of whispering-gallery resonators that 
are spatially coupled by the waveguides between. Each resonator has 
two whispering-gallery modes that propagate clockwise (green) and 
counter-clockwise (red). They are time-reversed pairs and are simi-
lar to the ‘spin-up’ and ‘spin-down’ degrees of freedom for electrons. 
The lengths of the coupling waveguides are carefully designed so that 
the total coupling phase between resonators precisely matches the 
AB phase in Fig. 4a: the vertical couplings have no phase changes, 
whereas the horizontal couplings have phases that are linear in y. 
In each ‘spin’ space, photons of opposite circulations experience 
opposite ‘AB’ phases (±ϕ), just like the electrons in Fig. 4a. These 
opposite loops are also illustrated in solid and dashed red lines for 
the ‘spin-up’ photons in Fig. 4b. As a result, the photonic frequency 
spectrum in this resonator array39,40 exhibits both Landau levels and 
fractal patterns known as the Hofstadter butterfly, which are the sig-
natures of a 2D electron in a uniform magnetic field — the integer 
quantum Hall effect. However, without breaking T, the two copies 
of ‘spin’ spaces are degenerate in frequency and couple to each other. 
Only by assuming that these two ‘spins’ decouple from each other 
completely can Chern numbers of the same magnitude but opposite 
sign be defined and potentially measured41 in each ‘spin’ space. (The 
‘spin’-polarized counter-propagating edge modes bear similarities 
to the edge currents in the quantum spin Hall effect for electrons, 
but they are fundamentally different in symmetry protections and 
topological invariants, as discussed in Box 2.) These photonic gap-
less edge modes are robust against disorder that does not induce 
‘spin’ flips. For example, when a defect edge resonator has a differ-
ent size and resonance frequency from the bulk resonators, then 
the edge mode will find another route to pass around this defect 
resonator. A recent study42,43 suggested that the required spatially 
varying couplers along y can be made identical and periodic, but 
still achieving the same phenomena. Unfortunately, in these recip-
rocal schemes, perturbations that induce ‘spin’ flips are practically 
ubiquitous: local fabrication imperfections on the resonators or the 
couplers and even the coupling processes themselves can mix the 
‘spins’ and induce back-scattering.

Back-scattering in the above time-reversal-invariant systems 
can be eliminated by breaking T, for example using spatially coher-
ent time-domain modulations, as proposed theoretically in ref. 10. 
Fang et al. propose placing two kinds of single-mode resonators in 
the lattice shown in Fig. 4c. When the nearest-neighbour coupling is 
dominant, the two resonators (which have different resonance fre-
quencies) can couple only through the time-harmonic modulation 
between them. The vertical coupling phases are zero and the hori-
zontal coupling phases increase linearly along y, thereby producing 
effective AB phases from a uniform magnetic field. Photons moving 
in opposite directions have opposite phases, so they have different 
frequencies. Floquet’s theorem in the time domain — similar to 
Bloch’s theorem in the spatial domain — is used to solve this lattice 
system of time-periodic modulations. The resulting Floquet band-
structure has the same gapless edge states as that of a static quantum 
Hall phase.

Achieving accurate and coherent time-harmonic modula-
tions for a large number of resonators is experimentally challeng-
ing towards optical frequencies44–46. By translating the modulation 
from the time domain to the spatial domain, Rechtsman  et  al. 
experimentally demonstrated the photonic analogue of the quan-
tum Hall effect using optical photons (633 nm)15. These are also the 
first experiments on Floquet topological phases47,48. Starting with 
a 2D resonator array (Fig. 4d), the researchers extended the cavi-
ties along z to give a periodic array of coupled waveguides propa-
gating in this direction. In their system, z plays the role of time. 
More specifically, the paraxial approximation of Maxwell’s equa-
tions results in an equation governing diffraction (propagating in 
z) that is equivalent to Schrödinger’s equation evolving in time. The 
periodic helical modulations49,50 in z break the z-symmetry, which 

is equivalent to the time-domain modulations that break T. This 
symmetry-breaking opens up protected band degeneracies in the 
Floquet bandstructure, thus forming a topologically non-trivial 
bandgap that contains protected gapless edge modes.

The idea of creating effective magnetic fields for neutral particles51 
using synthetic gauge fields was first explored in optical lattices52. 
Very recently, similar gauge fields have also been studied in optom-
echanics53 and radiofrequency circuits54. Finally, although approxi-
mations such as ‘nearest-neighbour in space’ or ‘rotating-wave in 
time’ were adopted through the analysis of the systems described in 
this section, these higher order corrections do not fundamentally 
alter the topological invariants and phenomena demonstrated.

Bianisotropic metamaterials
In bianisotropic materials (χ  ≠  0, Box  2)55, the coupling between 
electric and magnetic fields provides a wider parameter space for the 
realization of different topological phases. In particular, it has been 
shown that bianisotropic photonic crystals can achieve topological 
phases without breaking T (T-invariant); thus, neither magnetism nor 
time-domain modulations are needed for the topological protection 
of edge states. Bianisotropic responses are known as ‘optical activity’ 
in chiral molecules and can also be designed in metamaterials.

Bianisotropy acts on photons in a similar way to how spin-orbit 
coupling acts on electrons56. In their inspiring theoretical proposal11, 
Khanikaev et al. enforced polarization (‘spin’) degeneracy for pho-
tons by equating ε to μ (ε = μ), so that the transverse electric (TE) and 
TM modes in two dimensions are exactly degenerate in frequencies. 
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protected one-way edge waveguide at microwave frequencies. 
a, Experimental set-up for measuring the one-way edge state between the 
metal wall and the gyromagnetic photonic crystal confined between the 
metallic plates to mimic the 2D TM modes. The inset is a picture of the 
ferrite rods that constitute the photonic crystal of lattice period a = 4 cm. 
b, The bandstructure of the one-way gapless edge state between the 
second and third bands of non-zero Chern numbers. c, Simulated field 
propagation of the one-way mode and its topological protection against a 
long metallic scatterer. d, The measured robust one-way transmission data 
of the edge waveguide.
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When the pseudo-tensor χ is of the same form as the gyroelectric 
or gyromagnetic terms in ε or μ, then χ acts as a magnetic field on 
each polarization with opposite signs, without breaking T. This sys-
tem can be separated into two independent ‘spin’ subspaces, in which 
quantum anomalous Hall phases exist with opposite Chern numbers.

Very recently, it was suggested that the ε = μ condition could poten-
tially be relaxed57. Indeed, in their experimental work, Chen et al.58 
relaxed the material requirements for matching ε and μ. They also 
realized a broadband effective bianisotropic response by embedding 
the ε/μ-matched metamaterials in a metallic planar waveguide. These 
advances enabled them to observe the ‘spin-polarized’ edge transport 
at around 3 GHz.

Similar to the T-invariant resonator arrays in Fig.  4b and 
refs 9,16,38,42,43, the above metamaterial realizations also require 
strict conditions in order to decouple the two copies of ‘spins’. In 
these cases, the requirements are on the accurate realization of the 
constitutive parameters during metamaterial manufacturing. The 
lack of intrinsic T-protected quantum spin Hall topological phase 
is one of the most fundamental differences between electronic and 
photonic systems, as discussed in Box  2. Finally, gapless surface 
states were also proposed to exist in a bulk hyperbolic metamaterial 
that exhibits bianisotropic responses59.

Quasicrystals
Quasicrystals are aperiodic structures that possess spatial order. 
They also have frequency gaps and interfacial states. Quasicrystals 
can be constructed from the projections of periodic crystals in 

higher dimensions. Krauss et al.14 projected the 2D quantum Hall 
phase onto a 1D quasicrystal model containing a tunable parameter 
that is equivalent to the Bloch wavevector lost during the projection. 
Scanning this periodic parameter reproduced the full gapless fre-
quency spectrum of the 2D quantum Hall phase; that is, the 0D edge 
mode frequency of the 1D quasicrystal continuously swept through 
the 1D bulk gap. The researchers fabricated 1D optical waveguide 
arrays to be spatially varying along z according to the continuous 
tuning of this parameter. In their system, z plays the role of time. 
They observed the edge state start from one edge of the waveguide 
array, merge into the bulk modes, then switch to the other edge of 
the array. Thus, light is adiabatically transferred in space from edge 
to edge. Going a step further, they proposed the potential realization 
of the quantum Hall phase in 4D using 2D quasicrystals60.

Weyl points and line nodes: Towards 3D topological phases
2D Dirac points are the key bandstructures that led to the first pro-
posal and experiments of the photonic analogue of the quantum 
Hall effect. For 3D61,62 topological phases, the key bandstructures 
are line nodes63, 3D Dirac points64 and, more fundamentally, Weyl 
points65. However, Weyl points have not yet been realized in nature. 
Recently, Lu et al. theoretically proposed12 the use of germanium or 
high-index glass for achieving both line nodes and Weyl points in 
gyroid photonic crystals at infrared wavelengths.

A line node63 is a linear line-degeneracy: two bands touch at a 
closed loop (Fig. 5a) while being linearly dispersed in the other two 
directions, thus making it the extension of Dirac cone dispersions 
in three dimensions. For example, H(k) = vxkxσx + vykyσz describes a 
line node along kz. PT therefore protects both Dirac cones and line 
nodes. The line node bandstructure in Fig. 5b is found in a double 
gyroid (DG) photonic crystal with both P and T. The surface disper-
sions of a line-node photonic crystal can be flat bands in controlled 
areas of the 2D surface Brillouin zone. When PT is broken, a line 
node can either open up a gap or split into Weyl points. Figure 5c 
shows a phase diagram of the DG photonic crystals, where the 
line node splits into one or two pairs of Weyl points under T or P 
breaking, respectively.

A Weyl point65 is a linear point-degeneracy: two bands touch at 
a single point (Fig. 5d) while being linearly dispersed in all three 
directions. The low-frequency Hamiltonian of a Weyl point is 
H(k) = vxkxσx + vykyσy + vzkzσz. Diagonalization leads to the solution 
ω(k) = ±√(vx

2kx
2 + vy

2ky
2 + vz

2kz
2). Because all three Pauli matrices 

are used in the Hamiltonian, the solution cannot have a frequency 
gap. The existence of the imaginary σy term means that breaking PT 
is a necessary condition for obtaining Weyl points. Weyl points are 
monopoles of Berry flux (Fig. 5d): a closed surface in a 3D Brillouin 
zone containing a single Weyl point has a non-zero Chern number 
of ±1. This means a single Weyl point is absolutely robust in 3D 
momentum space, as Weyl points must be generated and annihi-
lated pairwise with opposite Chern numbers. When only P is bro-
ken (T preserved), the minimum number of pairs of Weyl points is 
two because T maps a Weyl point at k to −k without changing its 
Chern number. When only T is broken (P preserved), the minimum 
number of pairs of Weyl points is one. The bandstructure in Fig. 5e, 
which contains the minimum of four Weyl points, is realized in a 
DG photonic crystal under P-breaking. Note that a Dirac point in 
three dimensions64 is a linear point-degeneracy between four bands, 
consisting of two Weyl points of opposite Chern numbers sitting on 
top of each other in frequency.

A photonic crystal that contains frequency-isolated Weyl points 
has gapless surface states. Consider the brown plane in the bulk 
Brillouin zone of Fig. 5f: it encloses either the top red Weyl point 
(C = +1) or the lower three Weyl points, depending on the choice of 
direction. Either way, this plane has a non-zero Chern number, simi-
lar to the 2D Brillouin zone in the quantum Hall case. Thus, any sur-
face state with this particular fixed ky is gapless and unidirectional. 
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Figure 4 | Quantum Hall phase of electrons in a magnetic field and of 
photons in coupled resonators exhibiting an effective magnetic field. 
a, Cyclotron motions of electrons in a static magnetic field (Bẑ). The vector 
potential increases linearly in y. b, A 2D lattice of photonic whispering-
gallery resonators coupled through static waveguides. The horizontal 
coupling phases increase linearly in y. The two ‘spins’ of the whispering-
gallery resonators are degenerate in the effective magnetic field. c, A 2D 
lattice of photonic resonators consisting of two types of single-mode 
cavities. The nearest neighbours are coupled through time-domain 
modulations, with horizontal phases increasing linearly in y; this breaks T. 
d, An array of helical photonic waveguides, breaking z symmetry, induces 
harmonic modulations on any photons propagating through it.
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Plotted on the left of Fig. 5f is an example of such surface states for 
the P-broken DG photonic crystal.

Outlook
The field of topological photonics has grown exponentially in recent 
years. Non-trivial topological effects have been proposed and real-
ized across a variety of photonic systems at different wavelengths 
and in all three spatial dimensions. This Review has introduced the 
main concepts, experiments and proposals of topological photon-
ics, focusing on 2D and 3D realizations. 1D examples are discussed 
in refs 66–72.

Over the coming years, we expect the discovery of new topologi-
cal mirrors, phases and invariants, which could be classified with 
respect to different symmetries73–77. The topological phases of inter-
acting photons78–80 could be explored by considering nonlinearity81 
and entanglement. Various topologically protected interfacial states 
between different topological mirrors will be studied. The immu-
nity to disorder and Anderson localization of those interfacial states 
must be addressed. Moreover, the concepts and realizations of topo-
logical photonics can be translated to other bosonic systems such 
as surface plasmons70,71, excitons82, exciton–polaritons83,84, phon-
ons85,86 and magnons87. Certain other robust wave phenomena can 
be explained through topological interpretations88.

Technologically, the exploitation of topological effects could 
dramatically improve the robustness of photonic devices in the 
presence of imperfections. As a result, it will become easier to 
design robust devices. For example, designers will soon worry less 
about insertion loss and Fabry–Pérot noise due to back-reflections. 
Topologically protected transport could solve the key limitation 
from disorder and localization in slow light35 and in coupled resona-
tor optical waveguides38. Unidirectional waveguides could decrease 
the power requirements of classical signals and improve coherence 
in quantum links89,90. One-way edge states of T-breaking topo-
logical phases could be used as compact optical isolators91. Edge 
states of T-invariant topological phases11,58 do not have reflection 
even when the system is reciprocal; thus, isolators may be unnec-
essary for photonic circuits comprising T-invariant topological 
phases. The realization of practical, topologically protected unidi-
rectional waveguides at optical frequencies is currently the main 
challenge of this emerging field. Much like the field of topological 
insulators in electronics, topological photonics promises an enor-
mous variety of breakthroughs in both fundamental physics and 
technological outcomes.
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