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Larger-area single-mode photonic crystal
surface-emitting lasers
enabled by an accidental Dirac point

Song-Liang Chua,"** Ling Lu,"* Jorge Bravo-Abad,’ John D. Joannopouloes,' and Marin Soljadi¢’
'Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
’DSO National Laboratories, 20 Science Park Drive, Singapore, 118230

’Departamento de Fisica Tedrica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC),
Universidad Auténoma de Madrid, 28049 Madrid, Spain

‘e-mail: csonglia@dso.org.sg

’e-mail: linglu@mit.edu

Received October 10, 2013; revised February 25, 2014; accepted February 28, 2014;
posted March 3, 2014 (Doc. ID 198553); published March 27, 2014

By altering the lattice geometry of the photonic crystal (PhC) surface-emitting lasers (PCSELs), we tune the regular
lasing band edges of quadratic dispersions to form a single accidental Dirac point of linear dispersion at the Brillouin
zone center. This not only increases the mode spacing by orders of magnitude but also eliminates the distributed
in-plane feedback to enable single-mode PCSELs of substantially larger area and thus substantially higher output
power. The advantages of using accidental Dirac cones are systematically evaluated through two-dimensional

in-plane calculations and confirmed by three-dimensional simulations of PhC slab devices.
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Higher power single-mode on-chip lasers with good beam
qualities are of interest for many applications. While the
edge emitting sources (distributed feedback lasers) suf-
fer from catastrophic optical damage at their facets,
surface-emitting sources (vertical cavity surface-emitting
lasers) are usually limited by their small cavity sizes. In
both examples, the single lasing mode is selected by
means of one-dimensional feedback structures. Utilizing
two-dimensional (2D) distributed feedback, surface emit-
ters have achieved broad-area single-mode operations
[1-3]. In particular, PCSELs have not only achieved
the highest surface-emitting single-mode power [4] but
also the ability to control the shapes [5], polarizations
[6], and directions [7] of the laser beams. PCSELSs are es-
sentially the 2D versions of the second-order distributed
feedback lasers [8], where the higher quality factor lasing
mode is selected through the symmetry mismatch to the
free-space modes [9-11]. However, the lasing areas of
PCSELs are limited by two fundamental constraints.
First, the mode spacing decreases as the cavity area in-
creases, which promotes multimode lasing. Second, the
distributed in-plane feedback localizes the lasing fields to
individual coherent sections, which promotes multi-area
lasing.

In this work, we tune the regular lasing band edges of
quadratic dispersions to form accidental Dirac cones
[12,13] of linear dispersions. This not only increases
the mode spacing by orders of magnitude but also
eliminates the distributed in-plane feedback, turning
the periodic index-modulated cavities into equivalent
Fabry—Perot-like cavities where the modes, however,
have different out-of-plane coupling losses. Both of these
advantages lead to single-mode PCSELs of significantly
larger areas and thus higher output powers. In the follow-
ing, we systematically evaluate the advantages of using
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accidental Dirac cones through 2D calculations and pro-
vide consistent results of 3D slab devices. The influences
of the photonic crystal (PhC) structures on the PCSELS’
lasing characteristics can be accounted for in terms of
the modal properties and dispersions of the correspond-
ing passive systems [11,14]. Thus, in this work, we focus
on analyzing the passive characteristics of the PhCs.

A Dirac cone is a special dispersion relation in the
band structure where the dispersion is linear and the den-
sity of states (DOS) vanishes at the Dirac point. It is well-
known that pairs of Dirac cones can exist in PhCs [15,16].
However, a single Dirac cone at the Brillouin zone center
(') is ideal for both vertical emission and single-mode
lasing in a PCSEL. This single Dirac cone can form when
the PhC is geometrically tuned so that a singly degener-
ate band is accidentally degenerate with a pair of doubly
degenerate bands at I' [12,13]. When this happens, two of
the three bands form an isotropic [17] Dirac cone and the
other one is flat. Such accidental Dirac points can univer-
sally exist in PhCs of square or triangular lattices consist-
ing of either dielectric-rod or air-hole arrays, with either
high or low index contrasts.

In Fig. 1(a), we obtained the single accidental Dirac
cone in a 2D triangular array of dielectric rods by tuning
the rod radius . Modal profiles are plotted as insets,
depicting the point group symmetry characteristic to
each of the three accidentally degenerate modes at I'.
Figure 1(b) considers the same structure but with a dif-
ferent rod radius, resulting in the usual case where the
band edges are of quadratic dispersions. The calculations
were performed with a unit cell using the MIT Photonic-
Bands package [18]. The lattice constant is denoted by a.
The resulting linear dispersion of the singly degenerate
mode (red band) in Fig. 1(a) has DOS that vanishes
linearly with frequency at the accidental Dirac point,
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Fig. 1. TM photonic band structure and DOS of a 2D triangular
array of dielectric rods €,,q = 12.5 in air background e, = 1.
(a) The rod radius 7 is tuned so that the doubly degenerate
modes (with E; symmetry in the Cg point group) are acciden-
tally degenerate with a singly degenerate A; mode (red band) at
I'. The modal profiles of the three accidentally degenerate
modes at I' are depicted with electric field pointing into the
page and having positive (negative) values in red (blue).
(b) The usual case where r is detuned from accidental degen-
eracy and the band edges are of quadratic dispersions.

0

as shown in the right plot. This corresponds to large
mode spacings near the band edge and a high spontane-
ous emission coupling factor [19]. On the other hand, the
DOS of the same band edge mode has a step function in
the case of quadratic dispersion in Fig. 1(b).

The simulations shown in Fig. 1 are 2D. However,
when a 2D PhC slab is implemented using the simulations
as a guidance, the modes at I" (being above the light-line)
will be able to couple to out-of-plane radiation. Only the
symmetry of the singly degenerate mode is mismatched
with the free space modes [9] and so has lower out-of-
plane radiation losses (higher @,) than the other
two modes. Thus, the band edge modes of this singly de-
generate band are the only lasing candidates within the
spectral range shown in the insets of Figs. 1(a) and 1(b).
From now on, we only consider the modes of this singly-
degenerate band.

To quantify the benefits of having linear dispersions at
the lasing band edges, we first compare the band edge
modes of two finite-sized 2D PhCs. One of them has
linear dispersion at the accidental Dirac point, while
the other has quadratic dispersion. The PhC analyzed
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Fig. 2. (a) Finite-sized 2D PhC cavity consisting of a triangular
array of dielectric rods €,,q = 12.5 embedded in air with dimen-
sion L = 40a. (b) The high @, band dispersions of three PhCs
with different rod radii. At I', the red band has a linear
dispersion while the green and blue bands have quadratic dis-
persions. (¢) Band edge modes of two finite-sized PhC cavities
of L = 300a with linear dispersion (top plot) and of L = 40a
with quadratic dispersion (lower plot). Insets show the mode
profiles with electric field pointing into the page and having
positive (negative) values in red (blue). (d) The upper plot illus-
trates the band edge mode spacing (Aw/w, where w, is the
band edge frequency) as a function of the cavity area. The lower
plot illustrates @ of the band edge mode as a function of the
cavity area. The filled circles and squares correspond to the
results shown in (c).

is a triangular array of dielectric rods (e,,q = 12.5) in
air that is truncated with a hexagonal-shaped boundary
of dimension L shown in Fig. 2(a). We altered the band
dispersions of the PhC by varying the rod radius 7. The
dispersion relations for three values of 7 are illustrated in
Fig. 2(b). A linear dispersion is formed when = 0.184a
while quadratic dispersions are formed at the remaining
two radii. In Fig. 2(c), the quality factors ¢ of the band
edge modes are plotted as a function of the frequency for
a cavity of L = 300a with linear dispersion (top plot) and
a cavity of L = 40a with quadratic dispersion (lower
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plot). These results were calculated using the finite-
difference time-domain (FDTD) method [20] with per-
fectly matched layer boundary regions. Remarkably,
the 300a PhC cavity at the accidental degeneracy is found
to have the same mode spacing (between the first two
band edge modes) as that of the 40a cavity even though
the former is 50 times larger in area. Moreover, @) of the
first band edge mode in the 300a cavity (linear
dispersion) is an order of magnitude smaller than that
in the 40a cavity (quadratic dispersion); this is because
the group velocity (v, = dw/dk) of the first band edge
mode is larger in the linear dispersion case. We note that
the low @ implies a weak in-plane feedback and low
localization effects.

Another distinction between the cavities with linear
and quadratic dispersions in Fig. 2(c) is that the modes
of the top plot (linear dispersion) all have similar @
values (since v, is constant) while the modes of the
lower plot (quadratic dispersion) have @, values that
are decreasing with frequency (since v, is increasing).
Nonetheless, in both cases, the first band edge modes
having the highest @, values will lase with the lowest
thresholds, because @ values increase with the cavity
sizes and will not be the dominant loss mechanism in
large cavities.

In the upper plot of Fig. 2(d), we compare the mode
spacing as a function of the PhC area for linear and quad-
ratic dispersions at the band edge. The data points in the
figure are results obtained from FDTD calculations of
the finite-sized PhC cavities. The solid lines are plotted
using analytic expressions with dispersion curvatures
extracted from the band structures in Fig. 2(b). The
two approaches are consistent with each other. To get
the analytic behavior, we assume that the first and the
second band edge modes have the same frequencies
as the modes of wavevectors k; = /L and ky, = 2z /L
in the infinite system, because they have similar mode
profiles and boundary conditions, as shown in the lower
plot of Fig. 2(c). The band edge mode spacing is then the
frequency difference between these two k-points illus-
trated in Fig. 2(b). Using this approach, the mode spacing
(Aw) of a linear dispersion is found to be inversely pro-
portional to L (Aw = zf/L) while the mode spacing of a
quadratic dispersion is inversely proportional to L2
(Aw = 37%a/L?). p is the linear slope and «a is the quad-
ratic curvature of the dispersions near the band edge.
These semi-analytical expressions are verified by the
mode spacings from FDTD simulations shown in the
upper plot of Fig. 2(d).

The results clearly indicate that by tuning to a linear
dispersion, the mode spacing can be made much larger
than that in a typical PCSEL with quadratic dispersion.
For instance, at L = 400a [dashed vertical line in
Fig. 2(d)], the mode spacing at the accidental point
(red line) is at least 60 times larger compared to the
PhC detuned from it (blue line). We note that the differ-
ence in the mode spacings between the linear and the
quadratic case becomes arbitrarily large as the area in-
creases. Equivalently, for the same mode spacing, the
PhCs with a linear dispersion can be made much larger
in area than those with quadratic dispersions. In Fig. 2(d),
the cavity size is increased by more than two orders of

magnitude when 7 is tuned from 0.26a to 0.184a while
maintaining the same mode spacing (Aw/wy, = 1 x 107%).

In the lower plot of Fig. 2(d), we compare the in-plane
feedback as a function of the PhC cavity area for linear
and quadratic dispersions at the band edge. We quantify
the in-plane feedback strength by the in-plane quality fac-
tor @ = wy7), where 7 («x L/v,) is the photon lifetime in
the PhC cavity. v, is a constant when the dispersion is
linear and is proportional to k¥ when the dispersion is
quadratic. The above analysis on mode spacing finds that
k scales as 1/L. Hence, Q& should scale with L when the
dispersion is linear and L= when the dispersion is quad-
ratic. In Fig. 2(d), @) calculated from finite-sized cavities
agree well with the above trends, except for small struc-
tures whose modes are of k values too far away from I" to
follow the quadratic functions. Physically, the linear in-
crease of Q” with L implies that the distributed in-plane
feedback in a typical PCSEL is completely eliminated at
the accidental degeneracy. In other words, the PCSEL be-
haves like a 2D Fabry—Perot cavity where feedback only
comes from its end mirrors. However, unlike typical
Fabry—Perot cavities where all the modes have the same
@ values, the proposed PCSELs can still select the first
band edge mode to lase due to its highest @, value. In
real devices, fabrication imperfections can cause field
localization effects prohibiting coherent lasing over a
larger area, but those effects will be much reduced when
the band edge has linear dispersion.

The above analysis thus far has considered 2D PhCs
without out-of-plane radiation losses. We now consider
a 2D PhC GaAs-based slab on AlAs substrate with open
boundaries in the vertical directions [see sketch in
Fig. 3(a)]. To show the generality of our approach and
simplify the fabrication process, the PhC analyzed is a
square array of air-holes with low grating coupling
strength. Figure 3(b) illustrates its band structure near
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Fig. 3. (a)2 x 2 unit-cells of a GaAs-based 2D PhC slab on AlAs
(n = 3) substrate. A square array of air-holes with radius 0.285a
is patterned in the top 0.47a-thick GaInP (n = 3.22) layer.
Sandwiched between GalnP and the substrate is a homo-
geneous la-thick GaAs (n = 3.52) layer. a is the lattice con-
stant. (b) Band structure (TE-like modes near I') of the
considered PhC slab. The hole radius is tuned so that the pair
of doubly degenerate modes (blue bands) is accidentally degen-
erate with a singly degenerate mode (red) at I'. Bottom inset
shows the corresponding @-plot of the three bands in a small
region near I', where @, diverges only for the red band.



I" when the air-hole radius is tuned to achieve an acciden-
tal degeneracy. The inset shows the corresponding @,
values of the three bands enclosed by the red box, in
a small region near I'. These calculations are performed
with the finite element method using the commercially
available software COMSOL. Similar to 2D PhCs, linear
dispersions of two bands form in the PhC slabs when
three band edges are tuned to be degenerate. The linear
dispersions imply that band edge modes with both large
mode spacings and low in-plane feedback can be real-
ized. Single-mode PCSEL operation is possible because
@, diverges only for one (red) band and its @, value
drops rapidly as k deviates from I', as shown in the inset
of Fig. 3(b). Interestingly, if one examines very close to I
[i.e., |k| < 0.0005(27/a)], a very different dispersion rela-
tion exists. Such an occurrence, however, does not affect
the conclusion of this work and will be the subject of a
different paper.

In conclusion, we have demonstrated that, compared
to typical PCSELs with quadratic band edge dispersions,
the formation of accidental Dirac cones of linear disper-
sions at I" not only increases the mode spacing by orders
of magnitude but also eliminates the distributed feedback
in-plane. This overcomes two of the fundamental limita-
tions to attaining larger-area and higher-power single-
mode PCSELs.
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