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The authors define a new class of binary matrices by maximizing the peak-sidelobe distances in the

aperiodic autocorrelations. These matrices can be used as robust position marks for in-plane trans-

lational spatial alignment. The optimal square matrices of dimensions up to 7 � 7 and optimal diag-

onally symmetric matrices of 8 � 8 and 9 � 9 were found by exhaustive searches. VC 2015
American Vacuum Society. [http://dx.doi.org/10.1116/1.4913316]

I. INTRODUCTION

Binary sequences1,2 and matrices with good autocorrela-

tion properties have key applications in digital communica-

tions (radar, sonar, CDMA, and cryptography)3 and in coded

aperture imaging.4 Several works have conducted exhaustive

searches for the optimal matrices of these applications.5–8 A

less developed application of binary matrices with good ape-

riodic autocorrelations is two-dimensional (2D) translational

spatial alignment. For example, it has been shown in

electron-beam lithography9–12 that position marks based on

such binary matrices are immune to noise and manufacturing

errors. However, the symbols that were used in these prior

works were borrowed from different applications, noticeably

the 1D Barker sequences from communications. There have

been no studies on the optimal patterns for translational

alignment.

In this paper, we define and report the optimal binary mat-

rices as alignment marks. Section II sets up the problem.

Section III defines the criteria for the optimal matrices.

Section IV discusses previous work related to this problem.

Section V works out the useful bounds. Section VI explains

the exhaustive computer searches and lists the results.

Section VII discusses several key observations of the optimal

marks. Section VIII compares the performance of optimal

and nonoptimal marks through simulations. Section IX dis-

cusses the potential applications of the matrices found.

Section X concludes the paper.

II. PRELIMINARIES

An alignment mark is made by creating a surface pattern

different from the background so that the pattern information

transforms into a two-level signal when a digital image is

taken. This image can be represented as a binary matrix

where 1 represents the (black) pattern pixels and 0 represents

the (white) background pixels or vice versa.

The 2D aperiodic autocorrelation (A) of an M by N binary

matrix with elements Ri,j is defined as

Aðs1; s2Þ ¼
XM

i¼1

XN

j¼1

Ri;jRiþs1;jþs2
; (1)

where s1 and s2 are integer shifts. The peak value is A(0, 0)

while all other values are sidelobes. A is an inversion-

symmetric ½Aðs1; s2Þ ¼ Að�s1;�s2Þ� ð2M � 1Þ � ð2N � 1Þ
matrix. The crosscorrelation between R and the data image

matrix Di,j is expressed as

Cðs1; s2Þ ¼
XM

i¼1

XN

j¼1

Ri;jDiþs1;jþs2
: (2)

When the data D is a noisy version of the reference R, the

peak value of the crosscorrelation determines the most prob-

able position of the mark.

It is important to note that all the matrices are implicitly

padded with 0s for all the matrix elements of indices exceed-

ing their matrix dimensions.

A linear transformation of the data matrix results in a lin-

ear transformation of the correlation as long as the reference

matrix is kept the same. This can be seen from

D0i;j ¼ cDi;j þ d; (3)

C0ðs1; s2Þ ¼ cCðs1; s2Þ þ d
XM

i¼1

XN

j¼1

Ri;j; (4)

where the second term of C0 is a constant. The data matrix

can thus be arbitrarily scaled (c 6¼ 0) while keeping the cor-

relation equivalent and the alignment results identical.

III. CRITERIA FOR THE OPTIMAL BINARY
MATRICES

Depending on the quantities being optimized, the criteria

for the optimal matrices are different. For alignment pur-

poses, we list two criteria here. The first is to minimize the

misalignment probability. The second is to minimize

the misalignment deviation. The first criterion depends on

the values of the autocorrelation sidelobes, while the second

one depends on their positions relative to the central peak.

In this paper, we chose to minimize the probability that

misalignment happens. A misalignment occurs when one of

the sidelobes exceeds the central peak [p¼A(0,0)]; this

probability is analytically expressed in Appendix A. Under

the same noise condition, the less the peak-sidelobe distance

the higher the misalignment probability. Consequently, the

criteria for ranking the matrices are based on their peak-

sidelobe distances.
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The peak-sidelobe distances are illustrated in Fig. 1. We

plotted an autocorrelation matrix AðsÞ with peak value p and

highest sidelobe value s. The shortest peak-sidelobe distance

is denoted as d1, where d1¼ p – s. The other distances are

defined as diþ 1¼ diþ 1 for i� 1, as shown for d1 through d4

in Fig. 1. ni gives the number of times di occurs in the auto-

correlation and
P

i ni ¼ ð2M � 1Þð2N � 1Þ � 1. The histo-

gram of an autocorrelation matrix can be expressed as

fd1jn1; n2; :::; nðsþ1Þg.
The criteria for finding the optimal matrix are to maximize

d1 and then minimize ni sequentially in the dictionary order.

These criteria are completely justified in the low noise limit in

Appendix A, although a general criteria depends on the

amount of noise in the data matrices. Matrices of any size can

be compared using these criteria. In general, the distances (di)

of the autocorrelation increase with the size of the matrix.

Without restricting the matrix dimension, the optimal matrix

will diverge in size. Consequently, we study the optimal ma-

trix for each fixed dimension. Interestingly, the optimal matri-

ces found in this paper are unique as discussed in Sec. VII.

IV. RELATED WORK

Previous works on 1 and �1 matrices with 0 back-

ground5,8 in digital communications are different than our

work on 1 and 0 matrices. The former representation has

three levels (1,�1,0) while our binary matrices have only

two levels. The aperiodic autocorrelations of these matrices

are not equivalent.

Other works on binary matrices of 1s and 0s with aperiodic

autocorrelations have used different criteria selected for appli-

cations in radar and sonar. In the Costas-array problem,6 only

one black pixel is placed per column and row and the maxi-

mum sidelobe is fixed to one. In the Golomb-rectangle prob-

lem,7 the number of black pixels is maximized with the

restriction that the sidelobe still be fixed to one.13 However, our

criteria does bear some resemblance to those in some of the

works on one dimensional�1 and 1 (three levels) sequences.2

V. TWO UPPER BOUNDS OF d1;maxðpÞ; dupper;I
1;max ðpÞ

AND dupper;II

1;max ðpÞ
For a binary matrix R, the peak value p of its autocorrela-

tion A equals the number of ones in the matrix (R). The larg-

est d1 for all matrices with a given p, of a fixed dimension, is

d1;maxðpÞ. d1;maxðpÞ ¼ p� sminðpÞ, where sminðpÞ is the mini-

mum highest sidelobe value as a function of p.

In this section, we constructed an upperbound of

d1;maxðpÞ; dupper;I
1;max ðpÞ, by maximizing p� Að61; 0Þ. The

Að61; 0Þ computed here forms a lower bound on

sminðpÞ; slower;I
min ðpÞ. This construction is illustrated in Fig. 2,

where we assume the matrix R used to construct our bound

is of dimension M�N with M�N.

We find:

dupper;I
1;max ðpÞ ¼

p; p 2 ½0;N1� I

N1; p 2 ½N1;N2� II

MðN þ 1Þ � p; p 2 ½N2;MN� III

;

8<
: (5)

where N1 ¼ MN=2;N2 ¼ ðMN=2Þ þM when MN is even

and N1 ¼ ðMN þ 1Þ=2;N2 ¼ ½ðMN þ 1Þ=2� þ ðM � 1Þ when

MN is odd.

This upper bound can be derived by starting out with a

matrix Ri,j¼ 0 for all (i, j) and “filling in” with ones in a par-

ticular pattern. In region I, ones can be placed anywhere in

Ri,j where i þ j is odd. When p¼N1, we have formed a

“checkerboard pattern.” In region II, we place ones wherever

iþ j is even for i¼ 1 or i¼N. In region III, the remaining

locations without ones are filled.

The autocorrelation function Aðs1; s2Þ equals the number

of black squares that are connected by a displacement vector

ðs1; s2Þ. We can use this property to construct a second lower

FIG. 1. We illustrate an autocorrelation function AðsÞ, whose peak value is

p, highest sidelobe value is s, and whose peak-sidelobe distances are di.

FIG. 2. Lowerbounds of sminðpÞ; slower;I
min ðpÞ and slower;II

min ðpÞ. p is the autocorre-

lation peak. The three matrices on top illustrate the methods of filling black

pixels for regions I, II, and III for the matrix construction of slower;I
min ðpÞ. The

gray pixels show spots to be filled in that region, while the black pixels are

spots that have been filled in previous regions.
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bound slower;II
min ðpÞ. This approach is similar to the method

used in Ref. 13.

Since the autocorrelation is invariant under inversion, there

are ½ð2M � 1Þð2N � 1Þ � 1�=2 ¼ 2NM � N �M unique

nonzero displacements; a matrix of p ones fills pðp� 1Þ=2 of

them. As p increases, there are repeated displacements

because pðp� 1Þ=2 quickly exceeds 2NM � N �M.

We can find a lowerbound slower;II
min ðpÞ by assuming that the

displacements added to the autocorrelation function distrib-

ute uniformly, that is jAðs1; s2Þ � Aðs02; s02Þj � 1 for nonzero

displacements. This gives slower;II
min ðpÞ ¼ ceilð½pðp� 1Þ�=

½4NM � 2N � 2M�Þ, where ceil½x� rounds to the nearest

integer greater than x. Consequently, dupper;II
1;max ¼ p

�ceilð½pðp� 1Þ�=½4NM � 2N � 2M�Þ.
As illustrated in Fig. 2, slower;II

min ðpÞ is a better bound for

small p, while slower;I
min ðpÞ is a better bound for large p. The

first bound slower;I
min ðpÞ, which keeps track of the pixel posi-

tions, becomes exact when p approaches “MN” (filled).

While the second bound slower;II
min ðpÞ, which ignores the actual

pixel locations, becomes exact when the matrix is sparse and

p approaches “0” (empty).

VI. EXHAUSTIVE COMPUTER SEARCHES FOR THE
OPTIMAL SQUARE MATRICES

Physical in-plane alignment usually requires equal align-

ment accuracies in both directions; this calls for square mat-

rices (M¼N). We applied exhaustive searches to find the

square matrices with the maximum d1(¼max[d1,max (p)]).

The resulting matrices were ranked using the criteria in Sec.

III to obtain the optimal matrices.

Backtrack conditions based on symmetries and sidelobes

have been found useful in exhaustive searches for binary

matrices.5,13,14 Matrices related by symmetry operations are

considered the same matrix. The symmetry operations for

square matrices are horizontal and vertical flips and rotations

by multiples of 90�. For this study, a backtrack condition

based on eliminating redundant matrices related by horizon-

tal flips was implemented. Backtrack conditions based on

sidelobe levels are useful if the sidelobes are being mini-

mized. However, we are maximizing the peak-sidelobe dis-

tance d1, so the sidelobe backtrack condition was not used.

The search algorithm we implemented works by exhaus-

tively generating matrices row by row. The algorithm contin-

ues generating rows until a backtrack condition occurs, or a

matrix is completely specified. The matrix is stored for later

ranking if it has the same or greater d1 than the existing max-

imum d1.

Several techniques were implemented to speed up the

algorithm. Each matrix row was represented as a binary

word so that fast bit-wise operations could be used. In addi-

tion lookup tables were created to calculate the horizontal

flips and correlations of rows. For our binary matrices, the

maximum sidelobes were typically located near the autocor-

relation peak. Because of this, the sidelobe values were

checked in a spiral pattern around the peak to quickly deter-

mine if a matrix had a d1 less than the stored maximum.

The search results for square matrices of size up to 7 � 7

are presented in Fig. 3. Figure 3(a) gives the optimal

FIG. 3. (Color online) Results of the exhaustive searches for 2 � 2 to 7 � 7 matrices. (a) The optimal matrices from 2 � 2 to 4 � 4 are shown. (b)–(d) sminðpÞ
is the first line below the diagonal line. The first solid gray line bounding sminðpÞ from below is slower;I

min ðpÞ, while the second dotted gray line bounding sminðpÞ
from below is slower;II

min ðpÞ. The number of matrices having the maximum d1 is the peaked line. The circle specifies the location of the optimal matrix. The opti-

mal matrices are presented as insets below their autocorrelations, which are labeled with their p and s values.
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matrices for 2 � 2, 3 � 3, and 4 � 4. In Figs. 3(b), 3(c), and

3(d) we plot, in red, sminðpÞ for matrices of sizes 5 � 5, 6

� 6, and 7 � 7. This red curve is indeed bounded from below

by the gray slower;I
min ðpÞ and slower;II

min ðpÞ constructed in Sec. V.

The number of the matrices having the maximum d1 is plot-

ted in blue. This curve peaks around the intersection of the

dupper;I
1;max and dupper;II

1;max upperbounds. The circle on the blue line

specifies the location of the optimal matrix ranked first by

the criteria in Sec. III. The optimal matrices and their auto-

correlations are shown as insets. The two numbers on the y-

axes of the autocorrelation plots are the p and s values of the

optimal matrices. The matrices ranked second and third and

their distance spectra are listed in Appendix B.

The runtime for 7 � 7 matrices was 3 hours on 1000 Intel

EM64T Nodes with 2.6 GHz clock speed. Exhaustive

searches of square matrices of size 8 � 8 are not accessible

to us, since the size of the search space increases exponen-

tially with the number of matrix elements as 2N2

.

VII. OBSERVATIONS ON THE OPTIMAL SQUARE
MATRICES

The first interesting observation is that most top-ranked

matrices in Fig. 3 are diagonally symmetric. Because of this

if we restrict our searches to symmetric matrices of larger

sizes, we still expect to find top-ranked matrices.14 The

search results for diagonally symmetric matrices of 8 � 8

and 9 � 9 are presented in Fig. 4.

The second observation for our optimal matrices shown

in Fig. 3, is that d1 always occurred in the first four neighbors

of the autocorrelation peak ½Að0;61Þ;Að61; 0Þ�. Since d1 is

the most likely point for misalignment, these matrices,

although optimized for misalignment probability, also have

low misalignment deviation discussed in Sec. III. Another

interesting property of the autocorrelation is that the ratio of

½Að0; 0Þ � Að61; 0Þ�=N or ½Að0; 0Þ � Að0;61Þ�=N is invari-

ant under symbol expansion (i.e., expanding the number of

pixels making up the original marker pixel). This property

allows us to define a new quantity for the optimal matrices

in this work called sharpness K ¼ d1=N. Since K is scale-

invariant, d1 can be easily obtained for different scaling fac-

tors and used to evaluate the alignment performance. The

sharpness (K) of the optimal matrices increases with the size

of the matrices.

The third observation is that all of the optimal matrices

shown in Figs. 3 and 4 are connected through their black

pixel (1s) and all but 3 � 3 are connected through their white

pixels. A pixel is connected if one or more of its eight neigh-

boring pixels has the same value. Connectedness is a pre-

ferred topological property for alignment marks; it makes

the marks self-supportive, suspendible, and robust against

mechanical disturbances.

The fourth observation is that the optimal matrices found

in Figs. 3 and 4 are unique; there is only one matrix with the

optimal histogram ranked by the criteria from Sec. III. In

general, the mapping from histograms to correlations is not

unique. For example the 2 � 2 matrices of
1 1

0 0

� �
and

1 0

0 1

� �
have identical histograms. It is unclear whether this

property holds for optimal matrices of all sizes.

VIII. ALIGNMENT ACCURACIES OF THE OPTIMAL
MATRICES

We study the performance of the optimal matrices by

comparing the optimal alignment marks to the cross patterns.

The matrices were embedded in a white “0” background

with a size five times that of the symbol. Uniform Gaussian

noise was added to all pixels to simulate a noisy image. This

was correlated with its noise-free version. The alignment ac-

curacy was determined by the deviation of the correlation

peak from the center for 10 000 trials.

In Fig. 5, we plot the alignment deviation as a function of

signal-to-noise ratio for two optimal marks from Fig. 3 and

the crosses. The y-axis is the horizontal alignment deviation

in pixels while the x-axis is the signal-to-noise ratio in deci-

bels ½¼ 20 log ðS=NÞ�. At a signal-to-noise ratio of 0 dB, the

markers are barely discernible by eye. All markers were

expanded to the same area, of 35 � 35 total pixels and em-

bedded in a background of 175 � 175 pixels, for direct

comparison.

Applying the criteria from Sec. III, using the expanded 35

� 35 symbols, the 7 � 7 mark is ranked first, followed by

the 5 � 5 mark, and then the crosses. The quality of the opti-

mal alignment marks should improve with increasing size,

which provides a motivation to continue the search for larger

optimal matrices.

FIG. 4. (Color online) Results of the exhaustive searches for diagonally symmetric 8 � 8 and 9 � 9 matrices.
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IX. APPLICATIONS

Correlation detection from a digital image is a simple, ef-

ficient, and reliable way to determine the position of an

alignment mark. In practice, the crosscorrelations can be cal-

culated by fast-Fourier-transforms. The peak of the correla-

tion can further be interpolated to obtain an alignment

accuracy better than the distance represented by a single

pixel of the image.9 The matrices reported in this paper are

the desirable patterns to use in this context; they can replace

the cross-type patterns widely in use today as position

markers. Alignment using these matrices is very robust

against noise in the imaging system and partial damage of

the mark, providing the strongest peak signal for accurate

subpixel interpolation. The potential applications of the mat-

rices found in this paper include, but are not limited to,

electron-beam lithography,10 planar alignment in manufac-

turing,15 synchronization,16 and digital watermarking.17

X. CONCLUSIONS

We introduced a new class of binary matrices (two level

signals) which have maximal peak-to-sidelobe distances in

their aperiodic autocorrelation. Optimal square matrices of

dimensions up to 7 � 7 and optimal diagonally symmetric

matrices of 8 � 8 and 9 � 9 were found using a backtrack

algorithm. Useful bounds, notable properties and the per-

formances of the optimal matrices were discussed.
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APPENDIX A: PROBABILITY OF MISALIGNMENT

The crosscorrelation between the data image and the ref-

erence matrix is denoted as Cðs1; s2Þ. The autocorrelation of

the binary reference matrix is denoted as Aðs1; s2Þ. The data

image is essentially a copy of the reference matrix with noise

added to it. We assume the noise is Gaussian and the stand-

ard deviation for each pixel is r. The “black” and “white”

pixel values of the data image are denoted as bi and wi,

whose expectation values are bi ¼ 1; wi ¼ 0 and �C ¼ A.

Misalignment happens if Cð0; 0Þ � Cðs1; s2Þ ¼ xs1;s2
� 0,

representing a sidelobe ½Cðs1; s2Þ� exceeding the central peak

[C(0,0)] in the crosscorrelation. Below we write this inequal-

ity in detail

xs1;s2
¼ Cð0; 0Þ � Cðs1; s2Þ

¼
Xp

i¼1

bi �
Xp�ds1 ;s2

i¼1

b
ðs1;s2Þ
i þ

Xds1 ;s2

i¼1

w
ðs1;s2Þ
i

( )
� 0;

p ¼ Að0; 0Þ; ds1;s2
¼ Að0; 0Þ � Aðs1; s2Þ > 0:

(A1)

FIG. 5. (Color online) “Horizontal” alignment deviation is shown for the four

alignment marks under various signal-to-noise ratios. The vertical deviation is

almost identical. The color of each plot line borders the corresponding

marker. All markers have been expanded to 35 � 35 pixels to illustrate the

idea of pixel expansion. The top line on the right edge, corresponds to the 7 �
7 cross, while the second to top line corresponds to the 5 � 5 cross. The sec-

ond to bottom line corresponds to the optimal 5 � 5 marker, while the bottom

line corresponds to the optimal 7 � 7 matrix.

TABLE I. Peak-sidelobe distance spectra of the top-three ranked square matri-

ces from the exhaustive search results.

N�N d1 d2 d3 d4

Ranking n1 n2 n3 n4

3� 3 4 5 6 7

First 4 4 12 4

Second 4 12 6 2

Third 6 6 12 0

4� 4 7 8 9 10

First 8 8 22 10

Second 10 2 10 18

Third 12 0 8 20

5� 5 10 11 12 13

First 4 6 10 6

Second 4 12 8 6

Third 4 12 16 12

6� 6 14 15 16 17

First 4 16 4 2

Second 6 6 12 4

Third 6 8 12 6

7� 7 19 20 21 22

First 14 8 6 0

Second 16 4 4 4

Third 16 4 8 4
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The first term in the inequality represents C(0, 0), where

each element of the reference matrix with value 1 multi-

plies the corresponding bi. The sum includes all p pixels of

bi. The two terms in the brackets represent Cðs1; s2Þ, when

the reference and data matrices are offset by (s1, s2).

b
ðs1;s2Þ
i is a subset of bi which multiply elements of value 1

in the reference matrix. w
ðs1;s2Þ
i is a subset of wi which mul-

tiply the remaining elements of value 1 in the reference

matrix.

xs1;s2
is a sum of Gaussian variables and so is also a

Gaussian variable with an expectation value xs1;s2
¼ ds1;s2

.

By bookkeeping the terms in Eq. (A1), one finds the standard

deviation r2
xs1 ;s2
¼ 2ds1;s2

r2.

The probability of misalignment due to the sidelobe at

ðs1; s2Þ is Mðxs1;s2
� 0Þ

M xs1;s2
� 0jxs1;s2

¼ ds1;s2

� �
¼
ð0

�1

1ffiffiffiffiffiffi
2p
p

rxs1 ;s2

exp
� xs1;s2

� ds1;s2ð Þ2

2r2
xs1 ;s2

" #
dxs1;s2

¼ 1

2
Erfc

ffiffiffiffiffiffiffiffiffiffi
ds1;s2

p
2r

� �
¼ M

ds1;s2

r2

� �
:

Here, the complementary error function is ErfcðtÞ ¼ ð2=
ffiffiffi
p
p
ÞÐ1

t dt0 expð�t02Þ.
The probability of misalignment (PoM) is the union of the

probability in the spaces bounded by all the inequalities

ðxs1;s2
� 0Þ at sidelobe positions ðs1; s2 6¼ 0; 0Þ. The individ-

ual spaces bounded by the inequalities overlap in general

making the exact calculation of PoM difficult. However, it is

easy to find an upper bound for the PoM by assuming no over-

lap between these spaces. Specifically, PoM �
P
ðs1;s2 6¼0;0Þ

Mðxs1;s2
� 0Þ (Ref. 2) where the sum is over all sidelobes.

Mðds1;s2
=r2Þ decreases as the distance ds1;s2

increases.

Consequently, a good criterion should tend to maximize the

overall di in order to minimize the probability of misalign-

ment. Also, it is of higher priority to maximize the smaller

distance, which contributes more to the PoM. This is the ba-

sis of our ranking criteria, which is completely justified in

the low noise limit. Under the low noise limit, the terms of

larger di make vanishingly small contributions compared to

the term of smaller di. We show this in Eq. (A2) by noticing

that Erfc (t) can be approximated by ð2=
ffiffiffi
p
p
Þ½ expð�t2Þ=t� for

large t (or small r).

lim
r!0

M diþ1=r2
� �

M di=r2ð Þ ¼ lim
r!0

exp � diþ1 � di

2r2

� � ffiffiffiffi
di

pffiffiffiffiffiffiffiffi
diþ1

p ¼ 0:

(A2)

However, the ranking criteria, in general, depend on the

noise level r. We note, due to the central limit theorem, the

above results still hold for non-Gaussian noise distributions,

when the matrix size is large.

APPENDIX B: DISTANCE SPECTRA

In order to provide additional useful matrices and to illus-

trate our ranking criteria, we tabulated, in Table I, part of the

peak-sidelobe distance spectra for the top-three ranked square

matrices from the exhaustive search results. The values of the

first four distances (d1, d2, d3, and d4) and the numbers (n1, n2,

n3, and n4) of the corresponding sidelobes are listed. Those

top-three binary square matrices are shown in Figs. 3 and 6.

1R. H. Barker, Communications Theory (Butterworth, London, 1953),

p. 273.
2F. Neuman and L. Hofman, IEEE Aerosp. Electron. Syst. Mag. 3, 570

(1971).

FIG. 6. Matrices ranked second and third. The first-ranked optimal matrices

are shown in Fig. 3.
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