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The wide-range application of photonic crystals and metamaterials benefits from the enormous design
space of three-dimensional subwavelength structures. In this Letter, we study the space group constraints
on photonic dispersions for all 230 space groups with time-reversal symmetry. Our theory carefully treats
the unique singular point of photonic bands at zero frequency and momentum, which distinguishes
photonic bands from their electronic counterpart. The results are given in terms of minimal band
connectivities at zero (M) and nonzero frequencies (M0). Topological band degeneracies are guaranteed to
be found in space groups that do not allow band gaps between the second and third photonic bands
(M > 2). Our Letter provides theoretical guidelines for the choice of spatial symmetries in photonics
design.
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Introduction.—A photonic system with translational
symmetry is described by a band structure showing the
frequency spectrum as a function of the lattice momentum.
The appearance of band gaps, where the density of states
vanishes, is the most prominent feature in photonic band
structures. How bands connect to each other over the
Brillouin zone and whether band gaps can open at specific
frequency levels are highly constrained by the symmetry of
the underlying lattice. Similar symmetry constraints on
electronic band structures were recently studied for space
groups [1–3]. However, these results are only translatable
to nonzero-frequency bands of photonics. The standard
treatment fails for photonic crystals because their band
structure has an intrinsic singularity at zero frequency and
momentum, as illustrated in Fig. 1. Understanding of
whether these two gapless bands can be separated from
the higher-frequency bands is important for constructing
photonic crystals with targeted properties. Low-frequency
bands also have high priority in practice because their
features are quite forgiving for fabrication imperfections. In
this Letter, we develop a group theoretic approach for
photonic bands and determine the possible gap positions
and band connectivities of time-reversal-invariant photonic
crystals for all 230 space groups. Our results will guide the
choice of space groups in designing photonic crystals,
metamaterials, and topological photonic lattices.
Motivations.—The study of photonic crystals began with

the search for three-dimensional band gaps [4–6]. The first
complete gap was discovered between the second and third
bands in the diamond lattice (space group 227) [7], and it
has remained the largest gap in dielectric photonic crystals
ever since [8–11]. (Hereafter, we refer to a space group by
its number assigned in Ref. [12] in bold italic font.) It is

reasonable that the largest gap opens between the lowest
bands, where the density of states is the lowest. We find that
227 is actually the largest space group that allows sepa-
ration between the second and third bands. This justifies
why no larger gaps than that of the diamond lattice have
been found using dielectrics.
Metamaterials of periodic metal composites [13] can be

understood as metallic photonic crystals (or plasmonic
crystals) [14,15]. Some of our results also apply to them, as
we discuss in a later section.
Topological photonics started by realizing that photonic

band structures could be distinct in their global configura-
tions ofwave functions belowa band gap [16,17]. Therefore,
knowing the general condition of band gaps is a prerequisite
in the search for topological photonic bands. Our results
show space groups in which topological band degeneracies,
such as Weyl points [18] and nodal lines, can be found
between the second band and higher bands.
Minimal connectivity: M and M0.—Minimal band con-

nectivities M and M0, illustrated in Fig. 1, are the key
quantity to be determined in this Letter. They represent the

FIG. 1. Two types of band connectivities (M and M0) are
distinguished by whether they are connected to ω ¼ jk⃗j ¼ 0.
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minimal number of bands that are required to connect with
each other somewhere in the Brillouin zone as a result of
the spatial symmetry and the time-reversal symmetry [19].
M denotes the set of bands connected to ω ¼ jk⃗j ¼ 0.
Obviously, M ≥ 2 for dielectric photonic crystals because
of the existence of the two gapless modes. M0 ≥ 1 denotes
the rest of the bands with higher frequencies. Throughout
the Letter, a band gap means that the two bands below and
above do not touch at any momentum in the entire
Brillouin zone.
We obtainM andM0 for each space group by examining

its compatibility relations and making use of its sub- and
supergroup relations. These principles are valid regardless
of the details of the system, such as unit-cell shapes
and material dispersions in permittivity or permeability.
The compatibility relations, reviewed in Sec. V of our
Supplemental Material [20], are relations among symmetry
representations at high-symmetry momenta. They require
that the combination of representations used in the band
structure is globally consistent over the entire Brillouin
zone. M and M0 are the minimal number of bands that
satisfy the compatibility relations.
A translationengleiche (t) subgroup [12] is a subgroup in

which the translation symmetry is preserved while other
group elements are removed; t supergroup is also defined
likewise. The identical translation implies the same
Brillouin zone structure. Intuitively, a higher symmetry
(t supergroup) implies a larger band connectivity and,
conversely, a lower symmetry (t subgroup) implies a
smaller band connectivity. For example, if a space group
allows M ¼ 2, all of its t subgroups have M ¼ 2, while all
of its t supergroups have a connectivity ≥ M.
Space-group constrains on M0.—Recently, a similar

approach has been applied to electronic band structures,
where the possible connectivities of bands are determined
for all space groups [1–3]. Our M0 values can be readily
obtained by halving the values in Ref. [1] (labeled ν in
Table S2 of Ref. [1]) to take into account the lack of spin in
the photonic problem. We show the results in Table S1 in
the Supplemental Material [20]. For symmorphic space
groups (containing neither screw nor glide), M0 ¼ 1
because of the existence of 1D representations. For non-
symmorphic space groups, M0 ≥ 2, as we explain below.
This table applies to any bosonic band structure.
It is important to note that M ≠ M0 in general. For

example, the single gyroid (belonging to space group 214)
has a band gap between the second and third bands (i.e.,
M ¼ 2) [18]. However, according to Table S1, M0 ¼ 4 for
this space group. This apparent mismatch motivated us to
revisit the band theory for photonic crystals. The key
difference lies at the singularity at ω ¼ jk⃗j ¼ 0.
Singularity at zero.—Maxwell’s equations in free space

do not have a converging eigensolution exactly at
ω ¼ jk⃗j ¼ 0. Around this point, electric and magnetic fields

for a wave vector k⃗polarize in the plane perpendicular to k⃗
and do not converge as k⃗→ 0⃗. Therefore, wave functions at
this singular point may not form a representation of the
symmetry of the system, and the standard band theory and
group theory fail in general. In comparison, electronic band
structures do not have such singularities. Phonons also
disperse linearly at zero, but they can have a converging
solution with three branches representing a vector in three
dimensions [21], in contrast with photons, which have only
two transverse gapless branches.
Fortunately, anywhere away from the singular point,

wave functions are smooth and representations can be
assigned. We argue that, in dielectric photonic crystals, two
gapless modes transform in the same way as plane waves
under spatial symmetries around the singular point. This
can be understood through a thought experiment, in which
we adiabatically increase the dielectric constant from the
free-space unity (ϵ ¼ 1) to any values of ϵ ≥ 1 for any point
in space, while maintaining the assumed spatial sym-
metries. In this adiabatic process, the dispersion curves
can move, but their symmetry representations never
change. Consequently, the two gapless photon dispersions
have the same symmetry eigenvalues as the plane waves of
uniform vectorial electric fields (or pseudovectorial mag-
netic fields). They are ei½ð2πÞ=n% and e−i½ð2πÞ=n% for an n-fold
rotation and þ1 and −1 for a mirror along each high-
symmetry line around ω ¼ jk⃗j ¼ 0. We use these rules to
study M.
Metallic photonic crystals.—The properties of the low-

est-frequency bands of some metallic photonic crystals are
different than those for dielectric crystals. Here, we classify
metallic photonic crystals into three classes according to
their low-frequency dispersions. Our results in this Letter
apply to the first two classes, but not the third one.
The first class of metallic photonic crystals has the same

low-frequency dispersion as dielectrics. An example is
given by a periodic arrangement of isolated metallic
elements that are disconnected from each other in every
spatial direction. Our results for M and M0 clearly apply to
this class. The second class has a band gap toward the zero
frequency, which can be interpreted as M ¼ 0. Our M0 still
applies in this case. Examples include a single metallic
network connected in all three dimensions. The third class,
discovered recently [22–24], has exotic low-frequency
bands. Although our results for M0 still apply, the M
values of this class require a separate treatment.
Nonsymmorphic examples of M > 2.—Below, we dis-

cuss two sets of examples (nonsymmorphic and symmor-
phic space groups) to explain how the above photonic band
theory is applied to derive M for 230 space groups.
First, we demonstrate that a twofold screw symmetry

protects crossings of the lowest four bands somewhere
along a high-symmetry line (i.e., M ¼ 4), while a glide
symmetry does not. To this end, let us start with reviewing
the basics of a twofold screw symmetry. Space group 4
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(P21) is generated by translations and a twofold screw
rotation S2z that maps ðx; y; zÞ to ½−x;−y; zþ ðc=2Þ% (a, b,
and c are the lattice constants). The line Γ-Z connecting
Γ ¼ ð0; 0; 0Þ and Z ¼ ½0; 0; ðπ=cÞ% is invariant under the
screw operation. Because ðS2zÞ2 ¼ Tz is the unit lattice
translation in z, the eigenvalues of S2z are ' eikzc=2. The
factor of 1=2 in the exponent implies that the two
eigenvalues interchange when kz increases by ð2π=cÞ. As
a result, a branch with an eigenvalue of þeikzc=2 must cross
with another branch with −eikzc=2 somewhere along this
line. Therefore, the band connectivity (M and M0) must
always be even. In the presence of time-reversal symmetry,
the crossing point is pinned to the Z point, where the Sz
eigenvalues are purely imaginary and form a pair under
time-reversal symmetry.
Now, recall that the fields around Γ transform in the same

way as plane waves. Thus, they flip signs under the π-
rotation partC2z∶ ðx; y; zÞ ↦ ð−x;−y; zÞ of the screw. This
implies that both of the gapless branches have the screw
eigenvalue −eikzc=2. As a result, in total, four bands have to
cross each other, resulting in a linear crossing between the
second and third bands, as shown in Fig. 2(a). This
conclusion holds in any space group that contains 4 as a
t subgroup. The crossing becomes a nodal line when the t
supergroup contains the inversion symmetry; otherwise, it
is a Weyl point, as in 4.
Let us compare this result for a twofold screw with a

glide reflection symmetry. Although a glide and a twofold
screw usually result in the same band connectivity in
electronic band structures, the effect is clearly different
in photonic bands. To see this, let Gz be the glide operation
transforming ðx; y; zÞ to ½x;−y; zþ ðc=2Þ%. Eigenvalues of
Gz along the line Γ-Z are ' eikzc=2, the same as S2z, as
ðGzÞ2 ¼ Tz ¼ eikzc. However, only one of the two gapless
photons flips sign under the mirror part Mz∶ ðx; y; zÞ ↦
ðx; y;−zÞ ofGz, unlike the twofold rotation part of S2z. As a

consequence, there is a consistent assignment of glide
eigenvalues with only two bands, as shown in Fig. 2(b).
Therefore, M ¼ 2 for space group 7 (Pc), generated by
translations and the glide symmetry.
Symmorphic examples of M > 2.—Next, let us demon-

strate that a band gap between the second and third bands
can be prohibited, even for symmorphic space groups. We
discuss space group 23 as an example and show that it has
M ¼ 3. Space group 23 (I222) has three π-rotations C2α
about α ¼ x, y, and z axes, in addition to the lattice
translations defined by the primitive lattice vectors
a⃗1 ¼ 1

2 ð−a; b; cÞ, a⃗2 ¼
1
2 ða;−b; cÞ, and a⃗3 ¼ 1

2 ða; b;−cÞ.
The corresponding reciprocal lattice vectors are b⃗1 ¼
½0; ð2π=bÞ; ð2π=cÞ%, b⃗2 ¼ ½ð2π=aÞ; 0; ð2π=cÞ%, and b⃗3 ¼
½ð2π=aÞ; ð2π=bÞ; 0%. Because ðC2αÞ2 ¼ 1, the eigenvalues
ζα ¼ ' 1 of C2α do not depend on k⃗, unlike the non-
symmorphic symmetries discussed above.
Let us first focus on the line connecting Γ to

X1 ¼ ½ð2π=aÞ; 0; 0%, which is symmetric under C2x. The
two gapless dispersions have the −1 eigenvalues of C2x
on the entire line. Similarly, the line Γ-X2 [X2 ¼
½0; ð2π=bÞ; 0%] has the C2y symmetry and −1 eigenvalues
for the two gapless dispersions. The line connecting Γ to
X3 ¼ ½0; 0; ð2π=cÞ% is also similar. Now, note that X1, X2,
and X3 are actually identical points in the Brillouin zone, as
X1 − X2 ¼ b⃗2 − b⃗1, for instance, is a reciprocal lattice
vector. We call this point X (¼ X1 ¼ X2 ¼ X3), and there
are three inequivalent lines connecting Γ to X. As a result,
the X point has all three π rotations with the multiplication
rule C2xC2y ¼ C2z. However, the two gapless photons both
have the eigenvalues ζx ¼ ζy ¼ ζz ¼ −1 and cannot fulfill
ζz ¼ ζxζy by themselves. Therefore, there must be at least
one extra band supplying a þ1 eigenvalue; Fig. 3 shows
one such possibility.
In this 23 example, X1 ¼ X2 ¼ X3 is a property of the

body-centered lattice. In contrast, other symmorphic space
groups with the identical point group but with different
lattice translations do not share the same conclusion. For
example, 22 (F222) of the face-centered lattice, 21 (C222)

FIG. 2. Consequence of a nonsymmorphic symmetry on band
connectivities. (a)M ¼ 4 for 4 (P21) containing a twofold screw.
(b) M ¼ 2 for 7 (Pc) containing a glide. The numbers aside the
vertical axes and the colors of the dispersions indicate the
eigenvalue of the nonsymmorphic symmetry.

FIG. 3. A possible band structure of space group 23 (I222)
along three different lines connecting Γ and X. The numbers aside
the vertical axes indicate the eigenvalues ζα of the C2α rotation for
α ¼ x, y, z. The three eigenvalues at the same point X must satisfy
ζxζy ¼ ζz, except at Γ.
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of the base-centered lattice, and 16 (P222) of the primitive
lattice all have M ¼ 2 (see the following list).
Space groups possible of M ¼ 2.—Applying a similar

analysis, we determine 104 space groups that allow a band
gap of M ¼ 2, as follows:

1; 2; 3; 5; 6; 7; 8; 9; 10; 12; 13; 15; 16; 21; 22; 24; 25; 27; 28;

30; 32; 34; 35; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46;

47; 48; 49; 50; 65; 66; 68; 70; 74; 75; 77; 79; 80; 81;

82; 83; 84; 86; 88; 89; 93; 98; 99; 100; 101; 102; 105;

107; 108; 109; 111; 112; 115; 119; 122; 123; 131; 141;

143; 146; 147; 148; 149; 150; 155; 156; 157; 160; 162;

164; 166; 168; 174; 175; 177; 183; 187; 189; 191; 195;

196; 199; 200; 203; 207; 210; 214; 215; 216; 221; 227:

In Sec. VI of the Supplemental Material [20], we derive the
solution to the compatibility relations for M ¼ 2 for the 16
key groups underscored in the above list. All of these space
groups here are a t subgroup of at least one of the 16
key space groups, as summarized in Table S2, which
implies M ¼ 2.
Our results are consistent with the known photonic band

gaps between the second and third bands. For example, the
three highest space groups ofM ¼ 2 are diamond (227) [7],
simple cubic (221) [25], and single gyroid (214) [18]. To
further verify our prediction, we provide a new example of
131 with M ¼ 2. Its band structure and density of states
[26] are plotted in Fig. 4(a), showing a full band gap
between the lowest dielectric bands.
Space groups ofM > 2.—One can also show that a band

gap between the second and the third bands is not allowed
by the compatibility relations for the rest 126 space groups.

All of these space groups are the t supergroups of at least
one of the following 22 key space groups:

4; 23; 67; 69; 73; 85; 87; 103; 104; 106; 110; 116; 117; 118;

120; 144; 145; 158; 159; 161; 201; 208:

We explain why it is not possible to realizeM ¼ 2 for these
key space groups one by one in Sec. V in the Supplemental
Material [20].
Our results are consistent with the band structures of

known photonic crystals in which no band gaps are found
between the second and third bands, such as the hexagonal
close packing (194) [27], tetrahedral (224) [28], face-
centered cubic (225) [29], body-centered cubic (229)
[30], and double-gyroid (230) [18] dielectric photonic
crystals.
To further verify our prediction, we provide a new

example of 223 with M > 2. In the example shown in
Fig. 4(b), the lowest two bands are a part of a six-
dimensional representation at R [31]. This is a new type
of topological band-crossing point beyond the Weyl
and Dirac points [32–34]. Gapping these topological
degeneracies by lowering the symmetry can generate
topological band gaps and interfacial states in three
dimensions [35–38].
Outlook.—This Letter presents a systematic symmetry

analysis of photonic bands for 230 space groups, which has
been lacking since the discovery of photonic crystals. The
results in Tables S1 (M0), S2 (M ¼ 2), and S3 (M > 2) in
Secs. I–III of the Supplemental Material [20] provide useful
design insights for photonic crystals, metamaterials, and
topological lattices. Future studies are expected toward a
more exhaustive knowledge of space group constraints on
photonic bands. First, satisfying the compatibility relations
is only a necessary condition for band gaps, as it only
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FIG. 4. Examples of new photonic crystals withM ¼ 2 andM > 2. (a) Space group 131 (P42=mmc) with rod radius 0.15a. There is a
full band gap of 5% between the second and third bands. All bands along A-Z are doubly degenerate. (b) Space group 223 (Pm3̄n) with
rod radius 0.1a. There is a sixfold degeneracy point at R. All bands along R − X are doubly degenerate. Insets are the real-space
structures of dielectric constant ϵ ¼ 13 in the cubic unit cell of lattice constant a.
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concerns the representations of high-symmetry momentum
points, lines, or surfaces. Topological degeneracies of Weyl
points and nodal lines can take place at general momenta.
Second,M > 2 values can be further pinpointed for all 126
space groups with M ≠ 2. Third, instead of the minimal
connectivity, all intrinsic band connectivity values can be
worked out. Last, the minimal band connectivities of
metallic photonic crystals with irregular zero-frequency
bands [22–24], the only case where our current results do
not apply, could be determined by extending the analysis in
this Letter.
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I. MINIMAL CONNECTIVITY OF NONZERO-FREQUENCY BANDS (M 0) OF 230 SPACE GROUPS

TABLE S1. Minimal band connectivity (M 0), of nonzero-frequency bands, of a time-reversal-invariant photonic crystal (both dielectric or
metallic) for all 230 space groups. We listed M

0 for all 157 nonsymmorphic groups. Those not listed are symmorphic space group whose
M

0 = 1.
No. M

0 No. M
0 No. M

0 No. M
0 No. M

0 No. M
0 No. M

0

4 2 39 2 66 2 100 2 129 2 165 2 201 2

7 2 40 2 67 2 101 2 130 4 167 2 203 2

9 2 41 2 68 2 102 2 131 2 169 6 205 4

11 2 43 2 70 2 103 2 132 2 170 6 206 4

13 2 45 2 72 2 104 2 133 4 171 3 208 2

14 2 46 2 73 4 105 2 134 2 172 3 210 2

15 2 48 2 74 2 106 4 135 4 173 2 212 4

17 2 49 2 76 4 108 2 136 2 176 2 213 4

18 2 50 2 77 2 109 2 137 2 178 6 214 4

19 4 51 2 78 4 110 4 138 4 179 6 218 2

20 2 52 4 80 2 112 2 140 2 180 3 219 2

24 2 53 2 84 2 113 2 141 2 181 3 220 6

26 2 54 4 85 2 114 2 142 4 182 2 222 2

27 2 55 2 86 2 116 2 144 3 184 2 223 2

28 2 56 4 88 2 117 2 145 3 185 2 224 2

29 4 57 4 90 2 118 2 151 3 186 2 226 2

30 2 58 2 91 4 120 2 152 3 188 2 227 2

31 2 59 2 92 4 122 2 153 3 190 2 228 4

32 2 60 4 93 2 124 2 154 3 192 2 230 8

33 4 61 4 94 2 125 2 158 2 193 2

34 2 62 4 95 4 126 2 159 2 194 2

36 2 63 2 96 4 127 2 161 2 198 4

37 2 64 2 98 2 128 2 163 2 199 4

A. 73 symmorphic space groups

1-3, 5, 6 , 8, 10, 12, 16, 21-23, 25, 35, 38, 42, 44, 47, 65, 69, 71, 75, 79, 81, 82, 93, 87, 89, 97, 99, 197, 111, 115, 119, 121,
123, 139, 143, 146-150, 155-157, 160, 162, 164, 166, 168, 174, 175, 177, 183, 187, 189, 191, 195-197, 200, 202, 204, 207, 209,
211, 215-217, 221, 225, 229

B. 62 centrosymmetric space groups

2, 10-15, 47-74, 83-88, 123-142, 147, 148, 162-167, 175, 176, 191-194, 200-206, 221-230
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II. SPACE GROUPS ALLOWING M = 2 (MINIMAL CONNECTIVITY OF ZERO-FREQUENCY BANDS)

TABLE S2. List of 104 space groups that a band gap between the second and the third bands (M = 2) of a time-reversal invariant dielectric
photonic crystal is not forbidden by the compatibility relations. They are listed according to their 16 supergroups. P means centrosymmetric
space groups (with inversion) and S means symmorphic space groups.

Key group P S M t-subgroups
39 (Aem2) 2 1, 5, 7, 8, 39
48 (P 2

n
2
n

2
n ) P 2 1, 2, 3, 7, 13, 16, 34, 48

49 (P 2
c
2
c

2
m ) P 2 1, 2, 3, 6, 7, 10, 13, 16, 27, 28, 49

50 (P 2
b

2
a

2
n ) P 2 1, 2, 3, 7, 13, 16, 30, 32, 50

68 (C 2
c
2
c
2
e ) P 2 1, 2, 3, 5, 7, 9, 13, 15, 21, 37, 41, 68

86 (P42/n) P 2 1, 2, 3, 7, 13, 77, 81, 86
100 (P4bm) 2 1, 3, 7, 8, 32, 35, 75, 100
101 (P42cm) 2 1, 3, 7, 8, 27, 35, 77, 101
102 (P42nm) 2 1, 3, 7, 8, 34, 35, 77, 102
107 (I4mm) S 2 1, 2, 5, 8, 42, 44, 79, 107
108 (I4cm) 2 1, 2, 5, 8, 9, 42, 45, 79, 108
131 (P42/mmc) P 2 1, 2, 3, 5, 6, 9, 10, 15, 16, 21, 25, 37, 40, 47, 66, 77, 81, 84, 93,

105, 112, 115, 131
191 (P6/mmm) P S 2 1, 2, 3, 5, 6, 8, 10, 12, 35, 38, 143, 147, 149, 150, 156, 157, 162, 164

168, 174, 175, 177, 183, 187, 189, 191
214 (I4132) 2 1, 5, 22, 24, 80, 98, 146, 155, 199, 214
221 (Pm3̄m) P S 2 1, 2, 3, 5, 6, 8, 10, 12, 16, 21, 25, 35, 38, 47, 65, 75, 81, 83, 89,

99, 111, 115, 123, 146, 148, 155, 160, 166, 195, 200, 207, 215, 221
227 (Fd3̄m) P 2 1, 2, 5, 8, 9, 12, 15, 22, 24, 43, 44, 46, 70, 74, 80, 82, 88, 98, 109,

119, 122, 141, 146, 148, 155, 160, 166, 196, 203, 210, 216, 227

Space groups of M = 2 allowed by compatibility relations:
1, 2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 21, 22, 24, 25, 27, 28, 30, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 65, 66, 68, 70, 74, 75, 77, 79, 80, 81, 82, 83, 84, 86, 88, 89, 93, 98, 99, 100, 101, 102, 105,
107, 108, 109, 111, 112, 115, 119, 122, 123, 131, 141, 143, 146, 147, 148, 149, 150, 155, 156, 157, 160, 162,
164, 166, 168, 174, 175, 177, 183, 187, 189, 191,195, 196, 199, 200, 203, 207, 210, 214, 215, 216, 221, 227.
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III. SPACE GROUPS OF M > 2 (MINIMAL CONNECTIVITY OF ZERO-FREQUENCY BANDS)

TABLE S3. List of 126 space groups of (M > 2), in which a band gap between the second and third bands is forbidden by the compatibility
relations in a time-reversal invariant dielectric photonic crystals. There must be band crossings between the second and third bands along a
high-symmetry momentum line. We listed them according to their 22 t-subgroups. P means centrosymmetric (with inversion) and S means
symmorphic (without screw nor glide). “M >” represents the lower-bound of M .

Key group P S M > t-supergroups
4 (P21) 4 11,14,17-20,26,29,31,33,36,51-64

76,78,90-92,94-96,113,114,127-130
135-170,173,176,178,179,182

185,186,193,194,198,205,212,213
23 (I222) S 3 71,72,97,121,139,140,197

204,209,211,217,225,226,229
67 (Cmme) P 4 125,129,134,138,224
69 (Fmmm) P S 3 139,140,202,225,226,229
73 (Ibca) P 4 142,206,228,230
85 (P4/n) P 4 125,126,129,130,222
87 (I4/m) P S 3 139,140,225,226,229
103 (P4cc) 4 124,130
104 (P4nc) 4 126,128,222
106 (P42bc) 4 133,135
110 (I41cd) 4 142,228,230
116 (P 4̄c2) 4 124,130,132,138
117 (P 4̄b2) 4 125,127,133,135
118 (P 4̄n2) 4 126,128,134,136,222,224
120 (I 4̄c2) 4 140,142,219,226,228,230
144 (P31) 3 151,152,169,172,178,181
145 (P32) 3 153,154,170,171,179,180
158 (P3c1) 4 165,184,185,188,192,193
159 (P31c) 4 163,184,186,190,192,194
161 (R3c) 4 167,218-220,222,223,226,228,230
201 (Pn3) P 4 222,224
208 (P4232) 4 223,224

Space groups of M > 2 :
4, 11, 14, 17, 18, 19, 20, 23, 26, 29, 31, 33, 36, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 67, 69, 71, 72,
73, 76, 78, 85, 87, 90, 91, 92, 94, 95, 96, 97, 103, 104, 106, 110, 113, 114, 116, 117, 118, 120, 121, 124, 125, 126,
127, 128, 129, 130, 132, 133, 134, 135, 136,137, 138, 139, 140, 142, 144, 145, 151, 152, 153, 154, 158, 159, 161,
163, 165, 167, 169, 170, 171, 172, 173, 176, 178, 179, 180,181, 182, 184, 185, 186, 188, 190, 192, 193, 194, 197,
198, 201, 202, 204, 205, 206, 208, 209, 211, 212, 213, 217, 218, 219, 220, 222, 223, 224, 225, 226, 228, 229, 230.
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IV. COMPATIBILITY RELATIONS.

Consider a crystal with a space group G. An element g 2 G maps ~r = (x, y, z) to pg~r + ~tg where pg 2 O(3) is a 3 by 3

orthogonal matrix. For each ~k in the Brillouin zone, we define the little group G~k = {g 2 G | pg~k = ~k mod ~G} that changes ~k
only by a reciprocal lattice vector ~G =

P3
↵=1 n↵

~b↵. Here, n↵ are integers and~b↵ are the reciprocal primitive vectors.
The wavefunctions at a high-symmetry point K (= �, X, Z, . . .) in the Brillouin zone belong to irreducible representations

U
K
i (i = 1, 2, . . .) of GK . The dimension of the irreducible representation dim[UK

i ] generically indicates the order of the
degeneracy at the point K, but the degeneracy might be enhanced due to the time-reversal symmetry. The full list of irreducible
representations for each space group G and each high-symmetry momentum K is available in Ref. [1].

Let us consider a set of M bands separable from both higher and lower bands by full band gaps. Suppose that an irreducible
representation U

K
i appears nK

i (> 0) times in these bands. By definition
P

i n
K
i dim[UK

i ] = M . The possible combination of
integers {nK

i }i=1,2,··· at two high-symmetry points K = K1,K2 are constrained by the symmetry along the line(s) connecting
K1 and K2, as we will see below through several examples. These constraints are called the “compatibility relations” and one
has to check them for every combination of high-symmetry momenta. The compatibility relations in turn restrict the possible
values of M — one cannot separate an arbitrary number of bands as there may not be any solution to the compatibility relations
for a given M [2].

V. THE ABSENCE OF THE M = 2 BAND GAP FOR THE KEY 22 SPACE GROUPS

As we explained in the main text, we need to prove that a full band gap at M = 2 is prohibited for the following 22 space
groups:

4, 23, 67, 69, 73, 85, 87, 103, 104, 106, 110, 116, 117, 118, 120, 144, 145, 158, 159, 161, 201, 208.

In the main text, we presented the proof for 4 and 23. Also, the argument in Ref. [2] that disproves a full band gap at M = 2
can be applied to 73, 106, 110, 144, and 145, since the argument did not involve the singular point �. In the following, we will
discuss the remaining 15 space groups.

A. 103, 104, 158, 159, and 161

For these five space groups, the only line one should look at is the one connecting � and Z = (0, 0, ⇡
c ). (For 158 and

159 belonging to the hexagonal lattice, the Z point is called the A point.) There are several 1D representations and one 2D
representation all the way along this line [1], and the two gapless photons belong to the 2D representation because of the rotation
eigenvalue. At the Z point, the 2D representation must appear twice to implement the time-reversal symmetry [1], but that
requires in total 4 bands. Therefore, M = 2 is prohibited.

To prove the absence of M = 2 band gaps by contradiction for the remaining space groups, we will assume a full gap between
the second and the third bands and then derive a contradiction based on the wrong assumption.

B. 67

The space group 67 (Cmme) belongs to the base-centered orthorhombic system with the primitive lattice vectors

~a1 = 1
2 (a,�b, 0), (1)

~a2 = 1
2 (a, b, 0), (2)

~a3 = (0, 0, c). (3)

The corresponding primitive reciprocal lattice vectors are

~b1 = ( 2⇡a ,� 2⇡
b , 0), (4)

~b2 = ( 2⇡a ,
2⇡
b , 0, (5)

~b3 = (0, 0, 2⇡
c ). (6)



5

The space group is generated by a ⇡-rotation C2x, a screw S2y , the inversion I ,

C2x : (x, y, z) 7! (x,�y,�z), (7)
S2y : (x, y, z) 7! (�x, y + b

2 ,�z), (8)
I : (x, y, z) 7! �(x, y, z), (9)

and the lattice translations by ~a1, ~a2, and ~a3. The � = (0, 0, 0), Y = (0, 2⇡
b , 0), Z = (0, 0, ⇡

c ), and T = (0, 2⇡
b ,

⇡
c ) points have

all of these symmetries and the representations are all one-dimensional at these points [1]. We examine the several lines among
them.

There are two lines connecting � and Y , (0, ky, 0) (ky 2 [0, 2⇡
b ]) symmetric under S2y and C2xI and (kx, 0, 0) (kx 2 [0, 2⇡

a ])
symmetric under C2x and S2yI (recall that ( 2⇡a , 0, 0) = Y + ~b1 is equivalent with Y ). These lines states that one of the two
gapless photons has (C2x, S2y, I) = (�1,+1,+1) and the other has (C2x, S2y, I) = (�1,+1,�1) at Y . Both of these modes
have the �1 eigenvalue of S2yC2x, while one of the two modes have the eigenvalue +1 and the other has �1 eigenvalue of
C2xI .

Now consider the line (0, 2⇡
b , kz) (kz 2 [0, ⇡

c ]) from Y to T , symmetric under S2yC2x and C2xI . The number of ±1
eigenvalues of these symmetries must be conserved along this line. Therefore, one of the two modes has (C2x, S2y, I) =
(⇠1,�⇠1, ⇠1) (⇠21 = 1), and the other has (C2x, S2y, I) = (⇠2,�⇠2,�⇠2) (⇠22 = 1) at T .

Next, we consider the line (0, 0, kz) (kz 2 [0, ⇡
c ]) from � to Z, symmetric under S2yC2x and C2xI . From the same reason,

one of the two modes have (C2x, S2y, I) = (⇠3,�⇠3, ⇠3) (⇠23 = 1), and the other has (C2x, S2y, I) = (⇠4,�⇠4,�⇠4) (⇠22 = 1) at
Z.

Finally, we look at two lines connecting Z and T , (0, ky, ⇡
c ) (ky 2 [0, ⇡

b ]) symmetric under S2y and C2xI and (kx, 0,
2⇡
c )

(kx 2 [0, 2⇡
a ]) symmetric under C2x and S2yI . By the conservation of the eigenvalues, we have

S2y : �⇠1 � ⇠2 = �(�⇠3 � ⇠4), (10)
C2xI : 0 = 0, (11)

S2yC2xI : �⇠1 + ⇠2 = �(�⇠3 + ⇠4) (12)

and

C2x : ⇠1 + ⇠2 = ⇠3 + ⇠4, (13)
S2yI : 0 = 0, (14)

S2yC2xI : �⇠1 + ⇠2 = �⇠3 + ⇠4. (15)

The unique solution to these simultaneous equations are ⇠i = 0, which violates ⇠2i = +1. This is a contradiction.

C. 69

The space group 69 (Fmmm) belongs to the face-centered orthorhombic system with the primitive lattice vectors

~a1 = 1
2 (0, b, c), (16)

~a2 = 1
2 (a, 0, c), (17)

~a3 = 1
2 (a, b, 0). (18)

The corresponding primitive reciprocal lattice vectors are

~b1 = (� 2⇡
a ,

2⇡
b ,

2⇡
c ), (19)

~b2 = ( 2⇡a ,� 2⇡
b ,

2⇡
c ), (20)

~b3 = ( 2⇡a ,
2⇡
b ,� 2⇡

c ). (21)

The space group is generated by ⇡-rotations C2x, C2y about x, y axes, the inversion I

C2x : (x, y, z) 7! (x,�y,�z), (22)
C2y : (x, y, z) 7! (�x, y,�z), (23)

I : (x, y, z) 7! �(x, y, z), (24)

and the lattice translations by ~a1, ~a2, and ~a3. The � = (0, 0, 0), X = ( 2⇡a , 0, 0), Y = (0, 2⇡
b , 0), and Z = (0, 0, 2⇡

c ) points have
all of these symmetries. We examine the several lines between these points.
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There are two lines connecting � = (0, 0, 0) and X = ( 2⇡a , 0, 0). The line (kx, 0, 0), symmetric under C2x, IC2y , and IC2z

(C2z ⌘ C2xC2y), demands that the two linear gapless modes have (i) two �1 eigenvalues of C2x and (ii) one +1 and one �1

eigenvalues of IC2y and IC2z at X . Also, the line (0, k, k) between � and X +~b1 = (0, 2⇡
b ,

2⇡
c ) requires that one of the two

modes have one +1 and the other has �1 eigenvalue of IC2x at X . This, in turn, means that the eigenvalue of C2y of the two
modes are the same. Therefore, both of the two modes have the same rotation eigenvalue (�1, ⇣y, ⇣z) with ⇣z = �⇣y = ±1 at
X . One can derive similar conditions for the Y and Z points in the same way; i.e., (⇣ 0x,�1, ⇣ 0z) at Y and (⇣ 00x , ⇣

00
y ,�1) at Z

There is also a line ~k = ( 2⇡a , ky, 0) connecting X = ( 2⇡a , 0, 0) and Z +~b3 = ( 2⇡a ,
2⇡
b , 0), which means that the eigenvalues

of C2y at X and Z are identical, ⇣ 00y = ⇣y . Similarly, ⇣ 00x = ⇣
0
x and ⇣

0
z = ⇣x. All in all, both of the two modes have the following

eigenvalues of the three ⇡-rotations,

X: (�1, ⇣y, ⇣z), (25)
Y : (⇣x,�1, ⇣z), (26)
Z: (⇣x, ⇣y,�1). (27)

Here, ⇣↵ = ±1 must satisfy ⇣y⇣z = �1, ⇣z⇣x = �1, and ⇣x⇣y = �1, but they cannot hold simultaneously. This is a
contradiction.

D. 85

The space group 85 (P4/n) belongs to the primitive tetragonal lattice system with the primitive lattice vectors and the primitive
reciprocal lattice vectors

~a1 = (a, 0, 0), (28)
~a2 = (0, a, 0), (29)
~a3 = (0, 0, c). (30)

~b1 = ( 2⇡a , 0, 0), (31)
~b2 = (0, 2⇡

a , 0), (32)
~b3 = (0, 0, 2⇡

c ). (33)

The group is generated by

C4z : (x, y, z) 7! (�y + a
2 , x, z), (34)

I : (x, y, z) 7! �(x, y, z), (35)

and the lattice translations.
Along the line (0, 0, kz) (kz 2 [0, ⇡

c ]) connecting � and Z = (0, 0, ⇡
c ), each band can be labeled by the eigenvalue of C4z . At

Z = (0, 0, ⇡
c ), one of the two linear gapless modes must have the eigenvalue (C4z, I) = (+i, ⇠) (⇠ = ±1) and the other must

have (C4z, I) = (�i, ⇠) due to the time-reversal symmetry. Both of the two modes have the eigenvalue (±i)2⇠ = �⇠ of the
glide Gz ⌘ C

2
4zI : (x, y, z) 7! (x+ a

2 , y +
a
2 ,�z).

Next, we look at the R = (⇡a , 0,
⇡
c ) point, where Gz and I generates the Z2 ⇥ Z2 symmetry. Note that Gz and I do not

commute at R; they satisfy GzI = TxTyIGz = �IGz where Tx and Ty are translations in x, y by a and hence take the value
Tx = +1 and Ty = �1 at R. Their 2D representation is given by the Pauli matrix, which are traceless except for the identity.

Finally, we consider the line (kx, 0,
⇡
c ) (kx 2 [0, ⇡

a ]) connecting Z and R. The line is symmetric under Gz . The eigenvalue
�⇠ of Gz at Z becomes +⇠ at R due to the nonsymmorphic nature of Gz . However, this is still in contradiction since the 2D
representation at R is traceless. Therefore, there must be at least two more bands that have the eigenvalues (C4z, I) = (±i,�⇠)
at �. In total four bands must cross with each other along �-Z-R.

E. 87

The space group 87 (I4/m) belongs to the body-centered tetragonal lattice system with the primitive lattice vectors and the
reciprocal vectors

~a1 = 1
2 (�a, a, c), (36)

~a2 = 1
2 (a,�a, c), (37)

~a3 = 1
2 (a, a,�c). (38)
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~b1 = (0, 2⇡
a ,

2⇡
c ), (39)

~b2 = ( 2⇡a , 0, 2⇡
c ), (40)

~b3 = ( 2⇡a ,
2⇡
a , 0). (41)

The group is generated by

C4z : (x, y, z) 7! (�y, x, z), (42)
I : (x, y, z) 7! �(x, y, z), (43)

and the lattice translations.
We have to look at two lines connecting � = (0, 0, 0) and Z = (0, 0, 2⇡

c ). The first line is (0, 0, kz) (kz 2 [0, 2⇡
c ]), which

requires that, just as in the case for 85, one of the two linear gapless modes has the eigenvalue (C4z, I) = (+i, ⇠) and the other
has (C4z, I) = (�i, ⇠) (⇠ = ±1) due to the time-reversal symmetry at Z. Hence, their eigenvalue of the mirror Mz ⌘ IC

2
4z at

Z is ⇠(±i)2 = �⇠.
The second line is (kx, 0, 0) (kx 2 [0, 2⇡

a ]) (recall that ( 2⇡a , 0, 0) = Z �~b1 +~b3 is equivalent with Z), which is symmetric
under the mirror Mz . Therefore, the two modes must have one +1 and one �1 eigenvalue of Mz . However, this contradicts
with the fact that the two modes have the same eigenvalue �⇠ of Mz .

F. 116

The space group 116 (P 4̄c2) belongs to the primitive tetragonal lattice system [Eqs. (28)-(33)]. The group is generated by

C̄4z : (x, y, z) 7! (y,�x,�z), (44)
Gy : (x, y, z) 7! (x,�y, z + c

2 ), (45)

and the lattice translations.
Consider the path from � to A = (⇡a ,

⇡
a ,

⇡
c ) via M = (⇡a ,

⇡
a , 0). The line (k, k, 0) (k 2 [0, ⇡

a ]) between � and M requires
that the two gapless photons have the �1 eigenvalue of the ⇡-rotation GyC̄4z : (x, y, z) 7! (y, x, c

2 � z) at M . There are four
1D representations and one 2D representation at M , and representations consistent with this rotation eigenvalue are the two 1D
representations with (C̄4z, Gy) = (�1, 1) and (1,�1) [1], for which C̄

2
4z = +1. Then the line (⇡a ,

⇡
a , kz) (kz 2 [0, ⇡

c ]) between
M and A indicates that the two modes belong to the 2D representation at A, since that is the only representation with C̄

2
4z = +1

at A [1]. This 2D representation is traceless except for the identity and C̄
2
4z [1].

There is another route going to A. The line (0, 0, kz) (kz 2 [0, ⇡
c ]) between � and Z = (0, 0, ⇡

c ) demands that one of the two
modes has the 1D representation with (C̄4z, Gy) = (+i, i⇠) (⇠ = ±1) and the other has (C̄4z, Gy) = (�i,�i⇠) at Z. Hence, the
two modes have the same eigenvalue of GyC̄4z = ⇠. Since the line (k, k, ⇡

c ) connecting Z and A is symmetric under GyC̄4z ,
this contradicts with the traceless nature of the 2D representation.

The argument for the space group 118 (P 4̄n2) is more or less identical. The group also belongs to the primitive tetragonal
lattice system [Eqs. (28)-(33)] and is generated by

C̄4z : (x, y, z) 7! (y,�x,�z), (46)
Gy : (x, y, z) 7! (a2 + x,

a
2 � y,

a
2 + z), (47)

The path from � to A = (⇡a ,
⇡
a ,

⇡
c ) via M = (⇡a ,

⇡
a , 0) demands that the two linear gapless modes have two 1D representations

with (C̄4z, Gy) = (�i, i) and (i,�i) at M and that they belong to the 2D representation at A because of the C̄
2
4z = �1

eigenvalue. Then the second path from � to A via Z cannot satisfy the traceless nature of the 2D representation at A.

G. 117

The space group 117 (P 4̄b2) belongs to the primitive tetragonal lattice system [Eqs. (28)-(33)]. The group is generated by

C̄4z : (x, y, z) 7! (y,�x,�z), (48)
Gy : (x, y, z) 7! (a2 + x,

a
2 � y, z), (49)

and the lattice translations.
Consider the path from � to A = (⇡a ,

⇡
a ,

⇡
c ) via Z = (0, 0, ⇡

c ). The line (0, 0, kz) (kz 2 [0, ⇡
c ]) between � and Z demands

that both of the two gapless photons have the �1 eigenvalue of the ⇡-rotation C̄
2
4z . Thus the two modes belong to the 2D
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representation at Z, since that is the only representation with C̄
2
4z = �1 [1]. This 2D representation is traceless except for the

identity and C̄
2
4z [1]. Then the line (k, k, ⇡

c ) connecting Z and A, symmetric under a screw GyC̄4z : (x, y, z) 7! (y + a
2 , x +

a
2 ,�z), tells us that the screw eigenvalues +1 and �1 come in pair at A.

There is another route going to A from �. The line (k, k, 0) (k 2 [0, ⇡
a ]) between � and M = (⇡a ,

⇡
a , 0) requires that the two

modes have the +1 eigenvalue of the screw GyC̄4z at M . The M point have four 1D representations and one 2D representation.
Among them, those consistent with this requirement of the screw eigenvalue are the two 1D representations (C̄4z, Gy) = (i,�i)
and (C̄4z, Gy) = (�i, i), which come in pair due to the time-reversal symmetry. Lastly, the line (⇡a ,

⇡
a , kz) (kz 2 [0, ⇡

c ]) is
symmetric under C̄2

4z and Gy , and the eigenvalues of these symmetries (C̄2
4z = (±i)2 = �1 and Gz = ±i) are preserved along

this line.
There are four 1D representations and one 2D representation at A, and the 2D representation is inconsistent with the negative

eigenvalue of C̄2
4z [1]. The four 1D representations at A are labeled by (C̄4z, Gy) = (i⇠1, i⇠2) with ⇠1 = ±1 and ⇠2 = ±1.

Due to the time-reversal symmetry at A, the representation (i⇠1, i⇠2) must come with (�i⇠1,�i⇠2). But then they have the same
eigenvalue �⇠1⇠2 of GyC̄4z . This is in contradiction with our conclusion of the first path that the screw eigenvalues +1 and �1
come in pair at A.

H. 120

The space group 120 (I 4̄c2) has the same symmetries C̄4z , Gy as 116 but belongs to the body-centered tetragonal lattice
system [Eqs. (36)-(41)].

The P = (⇡a ,
⇡
a ,

⇡
c ) point is not time-reversal invariant, but still the time-reversal symmetry T has a nontrivial consequence.

The P point is invariant under the C̄4z symmetry and there are four 1D representations labeled by C̄4z = � (�4 = +1). Consider
the combined symmetry T 0 = T Gy that preserves the P point modulo a reciprocal lattice vector. T 0 is an anti-unitary symmetry
that squares into (T 0)2 = G

2
y = Tz = �1 at P . Therefore, the band structure always exhibits two fold degeneracy at P .

Moreover, if |�i has the eigenvalue � of C̄4z (i.e., C̄4z|�i = �|�i), then T 0|�i has the eigenvalue �(�⇤)3 of C̄4z . Indeed,
using C̄4zGy = T

�1
z GyC̄

3
4z , we get

C̄4z(T 0|�i) = T (T�1
z GyC̄

3
4z|�i) = �(�⇤)3(T 0|�i). (50)

Therefore, the representation � always comes with �(�⇤)3. Namely, not only +i and �i are paired, but +1 and �1 are also
paired under T 0. As a result, the two bands have the same eigenvalue of C̄

2
4z = ±1, i.e., C̄2

4z = �1 for the ±i pair, and
C̄

2
4z = +1 for the ±1 pair.
On the other hand, X = (⇡a ,

⇡
a , 0) is invariant under C̄2

4z and GzC̄4z , which commute at X . There are four 1D representations
(C̄2

4z, GzC̄4z) = (⇠1, ⇠2) (⇠21 = ⇠
2
2 = 1). Lines connecting �, X , and Z = (0, 0, 2⇡

c ) require that one of the two gapless photons
has the representation (C̄2

4z, GzC̄4z) = (+1,�1) and the other one has (�1,�1) at X .
Finally, the line (⇡a ,

⇡
a , kz) connecting X and P is invariant under C̄2

4z . Hence, the number of eigenvalues ±1 of C̄2
4z must be

preserved along this line. However, there are one +1 and one �1 eigenvalues at X , but there are two +1 or �1 eigenvalues at
P , provided the M = 2 gap. This is a contradiction.

I. 201

The space group 201 (Pn3̄) belongs to the primitive cubic lattice system [Eqs. (28)-(33) with c = a]. The group is generated
by

C2z : (x, y, z) 7! (�x+ a
2 ,�y + a

2 , z), (51)
C3 : (x, y, z) 7! (z, x, y), (52)
I : (x, y, z) 7! �(x, y, z), (53)

Let us start with the line connecting � and R = (⇡a ,
⇡
a ,

⇡
a ) invariant under C3. There are 1D and 3D representations at R [1],

but if we assume M = 2 gap, the 3D representations are irrelevant. The diagonal line suggests that one of the two gapless
photons has the 1D representation with (C2z, C3, I) = (1,!, ⇠) (⇠ = ±1) and the other has (C2z, C3, I) = (1,!2

, ⇠), where
!
3 = 1.
Next, the line connecting R = (⇡a ,

⇡
a ,

⇡
a ) and M = (⇡a , 0,

⇡
a ) symmetric under C2zI . Along this line, the number of eigen-

values of C2zI must be conserved. At R, both of the two modes have C2zI = ⇠. However, at M , there are only two 2D
representations, both of which are traceless for C2zI [1]. Hence, there must be at least four bands connecting with each other
along the line �-R-M .
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J. 208

The space group 208 (P4232) belongs to the primitive cubic lattice system [Eqs. (28)-(33) with c = a]. The group is generated
by

S4y : (x, y, z) 7! (z + a
2 , y +

a
2 ,�x+ a

2 ), (54)
C3 : (x, y, z) 7! (z, x, y), (55)
I : (x, y, z) 7! �(x, y, z). (56)

There are two 1D, one 2D, and two 3D representations at R = (⇡a ,
⇡
a ,

⇡
a ) [1]. The line (k, k, k) connecting � and R, invariant

under C3, demands that the two linear gapless modes belong to the 2D representation, in which S
2
4y is represented by identity [1].

There are four 1D and one 2D representations at M = (⇡a , 0,
⇡
a ) [1]. The line (k, 0, k) connecting � and M , invariant under

C
2
3S4yC

2
3 , indicates that the two linear gapless modes belong to 1D representations, in which S

2
4y = +1 [1].

The line (⇡a , ky,
⇡
a ) connecting M and R is invariant under the screw S

2
4y . Since S

4
4y = T

2
y = e

i2kya, the eigenvalues of S2
4y

have the momentum dependence of eikya. Hence, the eigenvalues flip sign when moving from M to R. However, both of the
two modes have the eigenvalue +1 of S2

4y at M and R. This is a contradiction.

VI. THE POSSIBILITY OF THE M = 2 BAND GAP FOR THE 16 KEY SPACE GROUPS

A. 131 and 227

This is proven by examples.

B. 39, 100, 101, 102, 107, and 108

We prove this by showing that there exists a tight-binding model that has the same symmetry eigenvalues as required for
photonic band structures. These tight-binding models produce bands that are gapped in the entire Brillouin.

As the simplest example, let us look at 39 (Aem2) generated by

G2x : (x, y, z) 7! (�x, y + b
2 , z), (57)

C2z : (x, y, z) 7! (�x,�y, z), (58)

and lattice translations

~a1 = (a, 0, 0), (59)
~a2 = 1

2 (0, b,�c), (60)

~a3 = 1
2 (0, b, c). (61)

There are several lattice structures consistent with this symmetry. Here we look at the one with a site at ~x1 = (0, 0, 0) and
another site at ~x2 = (0, b

2 , 0) within the unit cell spanned by ~a1, ~a2, and ~a3. We put one py orbital on each site and consider the
tight-binding model of these two orbitals per unit cell.

Let us ask how these orbitals transform under the symmetry operations in order to determine the representation of the band
structure of the tight-binding model. In particular, we are interested in the representation at the � point, where additional
constraints are imposed for photonic crystals.

Under the C2z symmetry, the py orbital on the site ~x1 just flips sign. The py orbital on ~x2 also flips sign and moves to
~x2 �~a2 �~a3. But since we are interested in the symmetry representation at the � point at which translations are all represented
trivially, we can just neglect this position shift. Therefore C2z is represented by ��0 (�0 is the identity matrix).

Under the G2x symmetry, the py orbital on ~x1 and the one of ~x2 interchange with each other. Hence, the representation of
G2x = �1 (�1,2,3 are the Pauli matrices).

The line (kx, 0, 0) is symmetric under the mirror G2xC2z represented by �1(��0) = ��1. As required for photonic crystals,
these two bands have one +1 and one �1 eigenvalue of the mirror. The line (0, 0, kz) is symmetric under C2z = ��0. Again, as
required, both of the two bands have the �1 eigenvalue of C2z . One can verify the line (0, ky, 0) too. Hence, the band structure
of this tight-binding model fulfills all the requirements of the symmetry eigenvalues imposed for phonic crystals.

More generally, lattices consistent with the assumed space group symmetry are classified by Wyckoff positions. In the above
discussion of 39, we put a p orbital on each site of the Wyckoff position labeled a in [3]. Similarly, the tight-binding mode built
from one p orbital of each lattice site of the Wyckoff position in Table S4 generates a band structure that satisfies all symmetry
requirements for photonic crystals.
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TABLE S4. Wyckoff positions used in the proof.

Space group No. Wyckoff position
39 a or b

100 b

101 a or b
102 a

107 b

108 b

C. 48, 49, 50, 68, 86, 191, 214, and 221

Here we present the solution of the compatibility relations consistent with a M = 2 photonic gap. We list the trace of the
irreducible representations tr[UK

i (g)]. The symmetry element g is arranged in the order of Ref. [3]. In these tables, x̄ means �x

and “⇤” means that the momentum K is not symmetric under the corresponding symmetry operation.
For example, let us look at Table S8. According to Ref. [3], the group has eight symmetry elements in addition to the

translations. The momentum K = S = (⇡a ,
⇡
b , 0) is invariant under the following symmetry operations:

(1) : (x, y, z) ! (x, y, z), (62)
(2) : (x, y, z) ! (�x+ a

2 ,�y + b
2 , z), (63)

(5) : (x, y, z) ! (�x,�y + b
2 , z̄ +

c
2 ), (64)

(6) : (x, y, z) ! (x+ a
2 , y,�z + c

2 ), (65)

where the numbers in parenthesis are assigned in Ref. [3]. At this momentum, the gapless photons belong to the 2D representa-
tion which is traceless except for the identity operation (1). Hence, in the entry of K = S in Table S8, we have 2, 0, 0, and 0 for
the symmetry elements (1), (2), (5), and (6), respectively, and “⇤” for (3), (4), (7), and (8).

TABLE S5. Solutions of the compatibility relations for 48 (Pnnn). ⇠21 = ⇠
2
2 = ⇠

2
3 = 1, ⇠1⇠2⇠3 = 1.

High-sym. momentum tr[U(g)] in the order of Ref. [3]
Y = (0, ⇡

b , 0) (2, 0, 2̄, 0, 0, 0, 0, 0)

X = (⇡a , 0, 0) (2, 0, 0, 2̄, 0, 0, 0, 0)

Z = (0, 0, ⇡
c ) (2, 2̄, 0, 0, 0, 0, 0, 0)

U = (⇡a , 0,
⇡
c ) (2, 0, 2⇠2, 0, 0, 0, 0, 0)

T = (0, ⇡
b ,

⇡
c ) (2, 0, 0, 2⇠1, 0, 0, 0, 0)

S = (⇡a ,
⇡
b , 0) (2, 2⇠3, 0, 0, 0, 0, 0, 0)

R = (⇡a ,
⇡
b ,

⇡
c ) (1, ⇠3, ⇠2, ⇠1, 1, ⇠3, ⇠2, ⇠1)

(1, ⇠3, ⇠2, ⇠1, 1̄, ⇠̄3, ⇠̄2, ⇠̄1)
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TABLE S6. Solutions of the compatibility relations for 49 (Pccm). ⇠21 = ⇠
2
2 = ⇠

2
3 = 1, ⇠1⇠2⇠3 = 1.

High-sym. momentum tr[U(g)] in the order of Ref. [3]
Y = (0, ⇡

b , 0) (1, ⇠2, 1̄, ⇠̄2, 1, ⇠2, 1̄, ⇠̄2)

(1, ⇠2, 1̄, ⇠̄2, 1̄, ⇠̄2, 1, ⇠2)

X = (⇡a , 0, 0) (1, ⇠1, ⇠̄1, 1̄, 1, ⇠1, ⇠̄1, 1̄)

(1, ⇠1, ⇠̄1, 1̄, 1̄, ⇠̄1, ⇠1, 1)

Z = (0, 0, ⇡
c ) (2, 2̄, 0, 0, 0, 0, 0, 0)

U = (⇡a , 0,
⇡
c ) (2, 2⇠1, 0, 0, 0, 0, 0, 0)

T = (0, ⇡
b ,

⇡
c ) (2, 2⇠2, 0, 0, 0, 0, 0, 0)

S = (⇡a ,
⇡
b , 0) (1, ⇠3, ⇠̄1, ⇠̄2, 1, ⇠3, ⇠̄1, ⇠̄2)

(1, ⇠3, ⇠̄1, ⇠̄2, 1̄, ⇠̄3, ⇠1, ⇠2)

R = (⇡a ,
⇡
b ,

⇡
c ) (2, 2⇠3, 0, 0, 0, 0, 0, 0)

TABLE S7. Solutions of the compatibility relations for 50 (Pban). ⇠21 = ⇠
2
2 = 1.

High-sym. momentum tr[U(g)] in the order of Ref. [3]
Y = (0, ⇡

b , 0) (2, 0, 2̄, 0, 0, 0, 0, 0)

X = (⇡a , 0, 0) (2, 0, 0, 2̄, 0, 0, 0, 0)

Z = (0, 0, ⇡
c ) (1, 1̄, ⇠1, ⇠̄1, 1, 1̄, ⇠1, ⇠̄1)

(1, 1̄, ⇠1, ⇠̄1, 1̄, 1, ⇠̄1, ⇠1)

U = (⇡a , 0,
⇡
c ) (2, 0, 0, 2̄⇠1, 0, 0, 0, 0)

T = (0, ⇡
b ,

⇡
c ) (2, 0, 2⇠1, 0, 0, 0, 0, 0)

S = (⇡a ,
⇡
b , 0) (2, 2⇠2, 0, 0, 0, 0, 0, 0)

R = (⇡a ,
⇡
b ,

⇡
c ) (2, 2⇠2, 0, 0, 0, 0, 0, 0)

TABLE S8. Solutions of the compatibility relations for 68 (Ccce). ⇤ means that the corresponding operation is not a symmetry.

High-sym. momentum tr[U(g)] in the order of Ref. [3]
Y = (0, 2⇡

b , 0) (1, 1̄, 1̄, 1, 1, 1̄, 1̄, 1)

(1, 1̄, 1̄, 1, 1̄, 1, 1, 1̄)

Z = (0, 0, ⇡
c ) (2, 2̄, 0, 0, 0, 0, 0, 0)

T = (0, 2⇡
b ,

⇡
c ) (2, 2̄, 0, 0, 0, 0, 0, 0)

S = (⇡a ,
⇡
b , 0) (2, 0, ⇤, ⇤, 0, 0, ⇤, ⇤)

R = (⇡a ,
⇡
b ,

⇡
c ) (2, 0, ⇤, ⇤, 0, 0, ⇤, ⇤)

TABLE S9. Solutions of the compatibility relations for 86 (P42/n). ⇤ means that the corresponding operation is not a symmetry.

High-sym. momentum tr[U(g)] in the order of Ref. [3]
M = (⇡a ,

⇡
a , 0) (2, 2, 0, 0, 0, 0, 0, 0)

Z = (0, 0, ⇡
c ) (2, 2̄, 0, 0, 0, 0, 0, 0)

A = (⇡a ,
⇡
a ,

⇡
c ) (1, 1, 1, 1, ⇠, ⇠, ⇠, ⇠)

(1, 1, 1̄, 1̄, ⇠̄, ⇠̄, ⇠, ⇠)

R = (0, ⇡
a ,

⇡
c ) (2, 0, ⇤, ⇤, 0, 0, ⇤, ⇤)

X = (0, ⇡
a , 0) (2, 0, ⇤, ⇤, 0, 0, ⇤, ⇤)
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TABLE S10. Solutions of the compatibility relations for 191 (P6/mmm). In this table, ⇤ means that the corresponding operation is not a
symmetry. 1̄ is a shorthand for �1.

High-sym. momentum tr[U(g)] in the order of Ref. [3]
K = ( 4⇡3 , 0, 0),K0 = ( 2⇡3 ,

2⇡p
3
, 0) (2, 2, 2, ⇤, ⇤, ⇤, 2̄, 2̄, 2̄, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, 0, 0, 0, ⇤, ⇤, ⇤, 0, 0, 0)

M = (⇡, ⇡p
3
, 0) (2, ⇤, ⇤, 2, ⇤, ⇤, ⇤, ⇤, 2̄, ⇤, ⇤, 2̄, 0, ⇤, ⇤, 0, ⇤, ⇤, ⇤, ⇤, 0, ⇤, ⇤, 0)

M
0 = (0, 2⇡p

3
, 0) (2, ⇤, ⇤, 2, ⇤, ⇤, ⇤, 2̄, ⇤, ⇤, 2̄, ⇤, 0, ⇤, ⇤, 0, ⇤, ⇤, ⇤, 0, ⇤, ⇤, 0, ⇤)

M
00 = (�⇡,

⇡p
3
, 0) (2, ⇤, ⇤, 2, ⇤, ⇤, 2̄, ⇤, ⇤, 2̄, ⇤, ⇤, 0, ⇤, ⇤, 0, ⇤, ⇤, 0, ⇤, ⇤, 0, ⇤, ⇤)

A = (0, 0,⇡) (2, 1̄, 1̄, 2̄, 1, 1, 0, 0, 0, 0, 0, 0, 2, 1̄, 1̄, 2̄, 1, 1, 0, 0, 0, 0, 0, 0)

H = ( 4⇡3 , 0,⇡),H 0 = ( 2⇡3 ,
2⇡p
3
,⇡) (2, 2, 2, ⇤, ⇤, ⇤, 0, 0, 0, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, 2̄, 2̄, 2̄, ⇤, ⇤, ⇤, 0, 0, 0)

L = (⇡, ⇡p
3
,⇡) (2, ⇤, ⇤, 2, ⇤, ⇤, ⇤, ⇤, 0, ⇤, ⇤, 0, 2̄, ⇤, ⇤, 2̄, ⇤, ⇤, ⇤, ⇤, 0, ⇤, ⇤, 0)

L
0 = (0, 2⇡p

3
,⇡) (2, ⇤, ⇤, 2, ⇤, ⇤, ⇤, 0, ⇤, ⇤, 0, ⇤, 2̄, ⇤, ⇤, 2̄, ⇤, ⇤, ⇤, 0, ⇤, ⇤, 0, ⇤)

L
00 = (�⇡,

⇡p
3
,⇡) (2, ⇤, ⇤, 2, ⇤, ⇤, 0, ⇤, ⇤, 0, ⇤, ⇤, 2̄, ⇤, ⇤, 2̄, ⇤, ⇤, 0, ⇤, ⇤, 0, ⇤, ⇤)

TABLE S11. Solutions of the compatibility relations for the two gapless photonic bands of 214 (I4132) except for the singular � point. In
this table, ⇤ means that the corresponding operation is not a symmetry. 1̄ is a shorthand for �1.

High-sym. momentum tr[U(g)] in the order of Ref. [3]
H = (0, 2⇡

a , 0) (2, 2, 2, 2, 1̄, 1̄, 1̄, 1̄, 1̄, 1̄, 1̄, 1̄, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

N = (⇡a ,
⇡
a , 0) (1, 1, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, 1̄, 1̄, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤)

(1, 1̄, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, 1̄, 1, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤)
P = (⇡a ,

⇡
a ,

⇡
a ) (2, 0, 0, 0, 1̄, 1̄, 1̄, 1̄, 1̄, 1, 1, 1, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤)

TABLE S12. Solutions of the compatibility relations for 221 (Pm3̄m). In this table, ⇤ means that the corresponding operation is not a
symmetry. 1̄ is a shorthand for �1.

High-sym. momentum tr[U(g)] in the order of Ref. [3]
X = (⇡a , 0, 0) (2, 0, 0, 2̄, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, 0, 0, 0, 0, ⇤, ⇤, ⇤, ⇤, 2⇠, 0, 0, 2̄⇠, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, 0, 0, 0, 0, ⇤, ⇤, ⇤, ⇤)
M = (⇡a ,

⇡
a , 0) (1, 1, 1, 1, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, 1̄, 1̄, 1̄, 1̄, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇠̄, ⇠̄, ⇠̄, ⇠̄, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇠, ⇠, ⇠, ⇠, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤)

(1, 1, 1̄, 1̄, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, 1̄, 1̄, 1, 1, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇠, ⇠, ⇠̄, ⇠̄, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇠̄, ⇠̄, ⇠, ⇠, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤, ⇤)
R = (⇡a ,

⇡
a ,

⇡
a ) (2, 2, 2, 2, 1̄, 1̄, 1̄, 1̄, 1̄, 1̄, 1̄, 1̄, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2̄⇠, 2̄⇠, 2̄⇠, 2̄⇠, ⇠, ⇠, ⇠, ⇠, ⇠, ⇠, ⇠, ⇠, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
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