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The symmetry, Fourier space and space group properties of two-dimensional photonic crystal waveguides
are discussed. The modes of the standard single missing line defect waveguide can be classified as even or odd
along the transverse direction. This is contrasted with the modes of line defect waveguides with a glide plane
along the propagation direction. In this case the spatial Fourier series components of a single mode alternate
between even and odd. The theory of symmorphic and nonsymmorphic space groups is used to classify the
modes of these two waveguides, and the pairwise degeneracy at the Brillouin zone boundary is predicted for
the waveguide with a glide-plane. Three-dimensional finite-difference time-domain numerical calculations are
used to illustrate the investigated symmetry properties.
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I. INTRODUCTION

Two-dimensional photonic crystal geometries patterned in
finite-height dielectric or semiconductor slabs have been the
focus of significant research recently.1–5 The optical modes
are confined vertically via index guiding and the in-plane
properties are defined by the photonic crystal hole pattern.
The introduction of defects into the periodic lattice has al-
lowed control of the direction6 and speed7 of light propaga-
tion. Furthermore it has been shown that two-dimensional
photonic crystal resonant cavities exhibit large quality �Q�
factors with mode volumes on the order of a cubic
wavelength.8,9 Two-dimensional photonic crystal slab
waveguides are important building blocks for photonic inte-
grated circuits due to their compact size, lithographic tun-
ability, and low bending-loss. The two-dimensional pattern-
ing makes photonic crystal devices compatible with the
layer-by-layer fabrication process for planer lightwave cir-
cuits. They are also attractive for generating slow light and
enhancing light-matter interactions.

Much of the progress in designing low loss waveguides
and large Q factor cavities has been carried out utilizing a
free-standing suspended dielectric or semiconductor mem-
brane, so that the index contrast between the dielectric slab
and the top and bottom cladding is maximized. For photonic
crystal waveguides, this maximizes the low-loss transmission
bandwidth which is bounded by the light line for short wave-
lengths and the photonic crystal waveguide band edge at
long wavelengths.10 For photonic crystal cavities, the light-
cone projection onto the two-dimensional spatial Fourier
transform of the resonant mode is minimized when the top
and bottom cladding is air. This reduces the number of wave-
vector components radiating out-of-plane11 and has allowed
for Q factors exceeding one million.9,12

Although many suspended membrane devices have been
successfully demonstrated due to low out-of-plane optical
loss, there is significant motivation for including dielectric or
semiconductor top and bottom cladding layers for building
technologically viable devices. These advantages include im-
proved vertical heat dissipation, improved electrical conduc-

tivity and better mechanical stability. These improvements
come at the cost of lower vertical index contrast, which re-
duces the low-loss waveguide bandwidth13 and decreases the
cavity Q factor.14

One approach to reducing the out-of-plane losses of pho-
tonic crystal waveguides when the vertical index contrast is
reduced is through the introduction of a glide plane along the
waveguide propagation direction. As will be discussed later,
the addition of a glide plane to the photonic crystal wave-
guide introduces nonsymmorphic space group symmetry.
This configuration has been termed type B to differentiate it
from a line defect waveguide which we will refer to as type
A.15,16 Schematic diagrams of type A and type B photonic
crystal waveguides are shown in Figure 1. The type B wave-
guide is formed from a type A waveguide by shifting one
side of the photonic crystal cladding by one half lattice con-
stant along the x direction. Numerical calculations predict
that radiation losses for modes above the light line in a type
B waveguide can be as much as two orders of magnitude
lower than that of a type A waveguide.16

The reduced out-of-plane optical losses associated with
the type B waveguide have also been utilized in the design of
resonant cavities that include a dielectric lower substrate for
improved heat dissipation.17,18 These studies were motivated
by the goal of achieving continuous wave photonic crystal
laser operation. The photonic crystal double heterostructure
cavity was featured in these studies and is formed by per-
turbing a few periods of an otherwise straight waveguide.
When the heterostructure is formed from a type A waveguide
in a suspended membrane, it has been shown to have a Q
factor in excess of 106 with a mode volume on the order of a
cubic wavelength.9,12 However, the Q factor is significantly
reduced as the vertical index contrast is lowered. Forming
the heterostructure in a type B waveguide has resulted in an
improvement in the Q factor by as much as a factor of 5
when the index of the lower cladding is in the range of 1.4 to
1.8.18

In this work, we explore the modal and band-structure
properties of photonic crystal waveguides and focus on the
interesting effects of the nonsymmorphic space group sym-
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metry on the modes of the type B waveguide. Specifically we
show that the bands associated with a type A waveguide can
be classified as either even or odd along the y direction
whereas for a type B waveguide, the bands are neither even
nor odd but exist as pairs with closely related symmetry
properties. The modes of type A and type B waveguides are
characterized formally using space group theory. The fre-
quencies of the paired type B waveguide bands become de-
generate at the Brillouin zone boundary and we derive this
result using the group theory of nonsymmorphic space
groups and provide a physical explanation of its origin. In
addition to its general theoretical interest, this work has di-
rect application in the design of photonic crystal heterostruc-
ture cavities,18 the design of waveguide bends19 and wave-
guide band-structure engineering in general.7 Similar lattice
shifting approaches have been employed to increase the slow
light bandwidth in photonic crystal waveguides.20 Because
its waveguide bands flatten and become pairwise degenerate
at the Brillouin zone edge boundary, the type B waveguide
could potentially double the slow light bandwidth of photo-
nic crystal waveguides.

II. COMPUTATIONAL METHOD

Figure 2 shows the evolution of the photonic crystal

waveguide band structure as one side of the photonic crystal
lattice is shifted along the waveguide propagation direction.
The initial configuration without any shift corresponds to a
type A waveguide and the final configuration with a 0.5a
�where a is the lattice constant� shift corresponds to the type
B waveguide. The structure analyzed in Fig. 2 consists of a
free-standing semiconductor membrane with a refractive in-
dex of n=3.505 consistent with silicon at a wavelength of
1.5 �m. The silicon membrane thickness to lattice constant
ratio was set to d /a=0.6. The hole radius to lattice constant
ratio was set to r /a=0.30. The waveguide and photonic crys-
tal modes depicted in Fig. 2 are the lowest frequency modes
corresponding to the transverse electric polarization �Hz is
even in the z direction�.

The band structure was calculated using the finite-
difference time-domain method.21 Because of the periodicity
of the structure, only a single unit cell of the waveguide was
analyzed, and Bloch boundary conditions along the propaga-
tion direction �x direction in Fig. 1� were used to simulate an
infinite structure.13 Perfectly matched layer absorbing bound-
ary conditions were used to terminate the other boundaries.
The structure was discretized using 20 points per lattice con-
stant. The total domain included 20�340�200 discretiza-
tion points along the �x ,y ,z� directions. The blue shaded
regions correspond to the projection of the photonic crystal
cladding modes. These modes were also calculated using the
finite-difference time-domain method with Bloch boundary
conditions.22 In order to generate the band structure in Fig. 2,
simulations were run for individual � values spanning the
first Brillouin zone from �=0 to �=� /a. For each �, a broad
band initial condition was used to generate a 2�105 element
time sequence. The time sequences were discrete Fourier
transformed, and Padé �Ref. 23� interpolation was used to
estimate the center frequency.

FIG. 1. Schematic depiction of single missing line defect pho-
tonic crystal waveguides. w=�3a corresponds to the distance asso-
ciated with a single missing line defect. a is the photonic crystal
lattice constant and is illustrated in �a�. �a� Type A waveguide in
which the photonic crystal lattice on each side of the waveguide
core is aligned. �b� Type B waveguide in which the photonic crystal
lattice on each side of the core is shifted along x by a /2.

FIG. 2. �Color online� Photonic crystal waveguide dispersion
diagram for six different photonic crystal waveguides. A lattice shift
of 0.0a corresponds to a type A waveguide. The photonic crystal
lattice on the two sides of the waveguide core are shifted along the
x direction until 0.5a which corresponds to a type B waveguide.
The solid portions of the plot depict the projection of the photonic
crystal cladding modes onto the waveguide dispersion diagram. The
straight line cutting diagonally across the diagram is the light line.
The vertical axis is normalized frequency, where c is the vacuum
speed of light.
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III. BANDSTRUCTURE DISCUSSION

A. Qualitative properties of type A and type B waveguide
bands

Figure 2 displays the waveguide dispersion bands for six
different waveguides. The curves labeled 0.0a represent the
dispersion of the standard type A waveguide in which the
photonic crystal cladding making up the two sides of the
waveguide have not been shifted. The curves labeled 0.5a
correspond to the dispersion of the type B waveguide in
which the photonic crystal cladding making up the two sides
of the waveguide have been shifted by one half lattice con-
stant. The remaining curves correspond to the dispersion of
waveguides with varying degrees of lattice shift and illus-
trate how the dispersion bands of the type A waveguide
evolve into those of the type B waveguide.

One striking feature of Fig. 2 is the transition from a band
crossing for the type A structure to a band anticrossing for
every other waveguide near �a /�=0.44. In general, modes
associated with different bands �labeled by ni� in a photonic
crystal waveguide are orthogonal, and modes associated with
the same band but at different propagation constants are or-
thogonal: ���r��E� n1

�1�r�� ·E� n2

�2��r��d3r�=���1−�2��n1,n2
. This indi-

cates that the two bands that either cross or anticross at
�a /�=0.44 have three-dimensional field distributions whose
overlap integrals equate to zero: ���r��E� n1

� �r�� ·E� n2

���r��d3r�=0. If
we consider the shifting of one side of the photonic crystal
lattice to be a perturbation to the unshifted type A wave-
guide, coupled mode theory tells us that the coupling con-
stants characterizing the interaction between waveguide
modes involve spatial overlap integrals of the form

� �� E� n1

� �r�� · E� n2

���r����A�x,y,z� + 	��x,y,z��d3r� , �1�

where E� ni

� �r��=E� ni

� �x ,y ,z� is the electric field of a type A
waveguide mode labeled by i= �1,2	, �A�x ,y ,z� represents
the dielectric distribution of the type A waveguide and
	��x ,y ,z�=��x ,y ,z�−�A�x ,y ,z� represents deviation from
the type A waveguide structure induced by the photonic crys-
tal lattice shift. For the type A waveguide, 	��x ,y ,z�=0 and
�A�x ,y ,z�=�A�x ,−y ,z� which suggests that the E� ni

� �x ,y ,z� is

either even or odd along the y direction. If E� n1

� �x ,y ,z� is odd

and E� n2
�x ,y ,z� is even along the y direciton �or vice versa�

and ��x ,y ,z� is even, � vanishes, and there is no coupling
between the bands associated with E� n1

� and E� n2

� . Previous
studies of the spatial modes associated with the two bands
that cross for the type A waveguide have shown that one
mode is odd and one mode is even along the y direction.10

This results in �=0 for the two type A waveguide modes at
�a /�=0.44, and crossing is allowed. When one side of the
photonic crystal lattice is shifted, 	��x ,y ,z��0 and
	��x ,y ,z��	��x ,−y ,z�. If � is evaluated using the unper-
turbed even and odd modes of the type A waveguide, then
��0, which causes the modes to anticross. This argument
provides a qualitative explanation of why the type A wave-
guide bands cross at �a /�=0.44, and bands associated with
lattice shifted geometries anticross.

Another interesting feature displayed in Fig. 2 is the evo-
lution toward pairwise degeneracy of the waveguide bands at
the Brillouin zone boundary �=� /a as the structure evolves
from a type A to a B waveguide. In addition to its theoretical
interest, understanding this degeneracy is particularly impor-
tant for the design of heterostructure cavities, as the hetero-
structure bound state resonances form near waveguide dis-
persion extrema which often occur near the Brillouin zone
boundary.24 Constructing a heterostructure cavity from a type
B waveguide results in a cavity with two closely spaced
resonant modes as a result of this band degeneracy. In what
follows we investigate the y-direction symmetry of the type
B waveguide bands, and we find that for the bands consid-
ered in Fig. 2, the two bands that become degenerate at �
=� /a have different but related y-direction symmetry. With
this understanding one may modify the type B waveguide in
order to control the behavior of these modes in order to im-
prove device performance for a particular application.

Before proceeding with the analysis, we present a wave-
guide band-structure dispersion diagram shown in Fig. 3 for
a type B waveguide with a reduced waveguide core width of
0.8w �see Fig. 1�. In Fig. 2, the lowest frequency waveguide
band inside the photonic crystal bandgap for a type B wave-
guide partly overlaps with the low-frequency photonic crys-
tal modes. By reducing the photonic crystal waveguide core
width, one changes the effective index of the mode and thus
tunes the waveguide modes.10 In Fig. 3, the lowest-frequency
modes inside the band gap have been shifted to higher fre-
quencies toward the middle of the band gap. The purpose of
this tuning is to clarify the shape of these two waveguide
bands by allowing them to span the entire Brillouin zone. It
will also make obtaining the field profiles for an arbitrary �
value more straight forward which we do at the end of this
section. It should be noted that reducing the waveguide core
width does not change the transverse symmetry of the wave-
guide. The type A and B labels still apply, and the type B
waveguide is still characterized by a glide plane. The space
group theory labels discussed in Sec. IV apply to waveguide
structures with arbitrary core widths. When the photonic
crystal waveguide core width is tuned �either larger or

FIG. 3. �Color online� Photonic crystal waveguide dispersion
diagram for a type B waveguide with a waveguide core thickness of
0.8w where w is defined in Fig. 1.
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smaller�, the waveguide is no longer associated with a simple
missing line defect. However, this does not have any conse-
quences in the present discussion. It is also interesting to
note that this reduced width tuning is beneficial for device
applications. The reduced width type B waveguide has a
larger bandwidth �beneficial for wavelength division multi-
plexed telecommunication applications� and smaller mode
volume �beneficial for lowering power and nonlinear appli-
cations�.

B. Fourier space properties of type A and type B waveguide
modes

In this subsection we use the Bloch-mode properties of
photonic crystal waveguide modes to uncover the modal
properties of type A and type B waveguides. In particular we
derive a Fourier space relationship between the two modes
that become degenerate at the Brillouin zone boundary in the
type B waveguide. We begin by writing the real-space distri-
bution of a particular waveguide mode according to Bloch’s
theorem

Fi�x,y,z� = ui,��x,y,z�e−i�x. �2�

In Eq. �2�, Fi�x ,y ,z� is the ith field component, and
ui,��x+a ,y ,z�=ui,��x ,y ,z� is periodic along the propagation
direction �x�. The z dependence of ui,��x ,y ,z� is similar to
that of the fundamental slab mode, and the y dependence is
consistent with the confinement behavior of a photonic crys-
tal waveguide along the y direction. Because u��x ,y ,z� �we
suppress the subscript i from here on to simplify notation� is
periodic along x, it can be written as a Fourier series

u��x,y,z� = 

n=−


n=+


fn
��y,z�e−ix�2�/a�n, �3�

where fn
��y ,z� is the nth spatial Fourier series component of

the mode with propagation constant �. So any photonic crys-
tal waveguide mode can be expressed as

F�x,y,z� = 

n=−


n=+


fn
��y,z�e−ix��+�2�/a�n�. �4�

First we consider a type A photonic crystal waveguide in
which the structure is invariant under a mirror operation
about the x axis, �̂y, which takes y to −y. Because of
this invariance, we expect the field solutions to be eigenfunc-
tions of this operator with eigenvalue �y: �̂yF�x ,y ,z�
=�yF�x ,y ,z�. Because applying �y twice returns a field com-

ponent to its original configuration, one gets �̂y�̂y =1̂, where

1̂ is the identity operator. Subsequently one has

�̂y�̂yF�x ,y ,z�=�y
2F�x ,y ,z�=1̂F�x ,y ,z� resulting in �y = �1.

Therefore �̂yF�x ,y ,z�=F�x ,−y ,z�= �F�x ,y ,z� showing that
the type A waveguide modes will be either even or odd along
the y direction about the center of the waveguide. For the
type A waveguide band structure in Fig. 2, Hz�x ,y ,z� corre-
sponding to the lowest-frequency band in the bandgap is
even about y=0, and Hz�x ,y ,z� corresponding to the second
lowest frequency band in the band gap is odd about y=0. �A
more complete labeling of the modes is given in Fig. 9.� In

terms of the Fourier series expansion of these modes, the
even/odd symmetry along y results in

�̂yF�x,y,z� = F�x,− y,z�

= 

n=−


n=+


fn
��− y,z�e−ix��+�2�/a�n�

= � F�x,y,z�

= � 

n=−


n=+


fn
��y,z�e−ix��+�2�/a�n�. �5�

Comparing the second and fourth lines implies fn
��−y ,z�

= � fn
��y ,z�. This means that for a mode with even �odd�

symmetry along the y direction, every spatial Fourier series
component of that mode will also have even �odd� symmetry
along the y direction.

For the type B waveguide, the structure is no longer in-
variant under �̂y, and the modes cannot be classified as either
even or odd along the y direction. However, the waveguide is
invariant under �̂y followed by a translation along the x di-

rection by one half lattice constant, T̂x�a /2�. This type of
operation is known as glide reflection, and the glide reflec-
tion plane �or glide plane� is described by y=0. To simplify

notation, we define the operator ĝ= �̂yT̂x�a /2�. Again, due to
the invariance of the structure under ĝ, we expect the field
solutions to be eigenfunctions of this operator with eigenval-
ues g: ĝF�x ,y ,z�=gF�x ,y ,z�. Application of ĝ twice results
in a translation along the x direction by a. From Bloch’s
theorem, one has ĝĝF�x ,y ,z�=F�x+a ,y ,z�=e−i�aF�x ,y ,z�.
Therefore, the eigenvalues of the operator ĝ operating on a
field component F�x ,y ,z� are g= �e−i�a/2.

In terms of the Fourier series expansion of these modes,
application of ĝ results in

ĝF�x,y,z� = 

n=−


n=+


fn
��− y,z�e−i�x+a/2���+�2�/a�n�

= e−i�a/2 

n=−


n=+


e−i�nfn
��− y,z�e−ix��+�2�/a�n�

= � e−i�a/2F�x,y,z�

= � e−i�a/2 

n=−


n=+


fn
��y,z�e−ix��+�2�/a�n�. �6�

Comparing the second and fourth lines shows that the Fou-
rier components of the type B waveguide modes have the
following property

e−i�nfn
��− y,z� = � fn

��y,z� . �7�

As stated earlier, the waveguide modes of the type B waveg-
ude are not simply even or odd along the y direction. Equa-
tion �7� illustrates that they are made up of Fourier series
components that alternate between even and odd symmetry
along the y direction. This concept is illustrated in Table I
which lists the results of Eq. �7� for Fourier series compo-
nents labeled by indicies n= �. . .−2 ,−1 ,0 ,1 ,2 , . . .	. The
modes of the type B waveguide will behave according to

MOCK, LU, AND O’BRIEN PHYSICAL REVIEW B 81, 155115 �2010�

155115-4



either the second �labeled by “+”� or the third �labeled by
“−”� column of Table I. For the + modes, the Fourier com-
ponent in the first Fourier space unit cell is even, the Fourier
components in the second Fourier space unit cell �n= �1�
are odd, the Fourier components in the third Fourier space
unit cell �n= �2� are even, and so on. The first Fourier space
unit cell refers to the region −� /a
�
� /a. The second
Fourier space unit cell refers to the regions � /a
�

3� /a and −3� /a
�
−� /a. The third Fourier space unit
cell refers to the regions 3� /a
�
5� /a and −5� /a
�

−3� /a. A similar situation is true for the − modes: the
Fourier component in the first Fourier space unit cell �n
=0� is odd, the Fourier components in the second Fourier
space unit cell �n= �1� are even, the Fourier components in
the third Fourier space unit cell �n= �2� are odd, and so on.

C. Illustration of symmetry properties in field profiles

In this subsection we illustrate the symmetry property
�Eq. �7�� associated with the type B waveguide modes that
was derived in the previous subsection. Fig. 4 illustrates the
Hz�x ,y ,z=0� field profiles associated with the modes labeled
2A+ and 2B− in Fig. 3 for �a=2.0=0.634�. z=0 corre-
sponds to the midplane of the slab where the Hz component
is completely scalar for the TE-like slab mode. From Fig. 4 it
is clear that these modes are neither even nor odd about y.
Qualitatively speaking, the modes appear to “zigzag” along
the waveguide core as a result of the photonic crystal lattice
being a half lattice period out of phase on either side of the
core. It is also interesting to note that the mode associated
with the band labeled 2A+ in Fig. 3 has weaker confinement
along the y direction than that of mode 2B−. This is due to
the small frequency spacing between the 2A+ waveguide
mode and the low frequency band associated with the pho-
tonic crystal cladding modes. That is, mode 2A+ is weakly
confined by the photonic crystal lattice due to its shallow
placement in the band gap.

In Figs. 5�a� and 6�a� we display the spatial Fourier trans-
form of the modes depicted in Figs. 4�a� and 4�b�, respec-
tively. The spatial Fourier transforms consist of a series of
discrete peaks along the � direction. Each peak has a con-
tinuous distribution along ky. These peaks correspond to the

Fourier series components in Eq. �4�. Ideally these peaks
should be delta functions along the � direction with zero
width. The finite width of the peaks shown in Figs. 5 and 6 is
due to the finite spectral width filtering operation used to
isolate these modes in our finite-difference time-domain
simulation. It should be noted that Fourier space distributions
are plotted on a logarithmic scale indicating that the Fourier
peaks at �=2.0 /a+n2� /a �where n is an integer� are several

TABLE I. Symmetry of spatial Fourier series components ac-
cording to Eq. �7�.

n +�1A+,2A+� −�1B−,2B−�

−2 f−2
� �−y ,z�= f−2

� �y ,z� f−2
� �−y ,z�=−f−2

� �y ,z�
even odd

−1 −f−1
� �−y ,z�= f1

��y ,z� −f−1
� �−y ,z�=−f−1

� �y ,z�
odd even

0 f0
��−y ,z�= f0

��y ,z� f0
��−y ,z�=−f0

��y ,z�
even odd

1 −f1
��−y ,z�= f1

��y ,z� −f1
��−y ,z�=−f1

��y ,z�
odd even

2 f2
��−y ,z�= f2

��y ,z� f2
��−y ,z�=−f2

��y ,z�
even odd

FIG. 4. �Color online� Hz�x ,y ,z=0� field distribution for the
modes labeled �a� 2A+ and �b� 2B− in Fig. 3 corresponding to a
propagation constant of �=2.0 /a.
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orders of magnitude larger than elsewhere in the Fourier
space plot.

As stated earlier, these modes have a propagation constant
�=2.0 /a. It is clear that for both modes, the highest ampli-
tude Fourier series component �fn

��ky ,z=0�� is in the first
Fourier space unit cell �f0

��ky ,z=0�� and is labeled in Figs. 5
and 6. The Fourier series peaks are separated in Fourier
space along the � direction by the reciprocal lattice vectors
of the waveguide, which point along the � direction and have
magnitude 2� /a. It is also apparent that the amplitude of the
Fourier series peaks decreases as one moves away from the
first Brillouin zone.

Just below the spatial Fourier transforms in the top por-
tions of Figs. 5 and 6, we have plotted the spatial Fourier
transforms of Hz

even�x ,y ,z=0� and Hz
odd�x ,y ,z=0�.

Hz
even�x ,y ,z=0�= 1

2 �Hz�x ,y ,z=0�+Hz�x ,−y ,z=0�� and
Hz

odd�x ,y ,z=0�= 1
2 �Hz�x ,y ,z=0�−Hz�x ,−y ,z=0��. Note that

the Fourier space distribution for Hz
odd�x ,y ,z=0� passes

through zero at ky =0. This results in the dark line along
ky =0 in Fig. 5�c� and 6�c� �its thickness and abruptness is
due to the limited resolution in the ky direction�.

Hz
even and Hz

odd represent the decomposition of Hz into its
even and odd �along y� components. From Fig. 5 we see that
the Fourier series components making up the even compo-
nent of the mode are located in the first and third Fourier
space unit cells, and the Fourier series components making
up the odd component of the mode are located in the second
and fourth Fourier space unit cells. Comparison to the results
of Table I, shows that the mode labeled 2A+ in Fig. 3 has the

characteristics of the eigenfunction associated with the +
sign �hence the + label already in place� implying its eigen-
value under ĝ is g=+e−i�a/2.

In Fig. 6, we plot the spatial Fourier transform for the
mode labeled 2B− in Fig. 3. In this case, we see that the
Fourier series components making up the even component of
the mode are located in the second and fourth Fourier space
unit cells, and the Fourier series components making up the
odd component of the mode are located in the first and third
Fourier space unit cells. Comparison to the results of Table I,
shows that the mode labeled 2B− in Fig. 3 has the character-
istics of the eigenfunction associated with the − sign �hence
the − label already in place� implying its eigenvalue under ĝ
is g=−e−i�a/2.

We have also analyzed the symmetry properties of the
modes labeled 1A+ and 1B− in Fig. 3. The mode labeled 1A+

transforms according to the + sign in Eq. �7� and the mode
labeled 1B− transforms according to the − sign. For the two
sets of bands shown in Fig. 3, one sees that for the two bands
that become degenerate at the Brillouin zone boundary, one
will have y-direction symmetry defined by the + sign in Eq.
�7�, and the other will have y-direction symmetry defined by
the − sign.

Careful inspection of Figs. 5�b� and 5�c� reveal that small
Fourier series peak remain in the second Fourier space unit
cell of the spatial Fourier transform of Hz

even�x ,y ,z=0�
and in the first and third Fourier space unit cells of
Hz

odd�x ,y ,z=0�. Similarly, careful inspection of Figs. 6�b�
and 6�c� reveal that small Fourier series peaks remain in the

FIG. 5. �Color online� �a� Spatial Fourier transform of the mode
shown in Fig. 4�a�. At the bottom are spatial Fourier transforms for
the even �b� and odd �c� components of Hz�x ,y ,z=0�. FS and FT
stand for Fourier space unit cell and Fourier transform, respectively.

FIG. 6. �Color online� �a� Spatial Fourier transform of the mode
shown in Fig. 4�b�. At the bottom are spatial Fourier transforms for
the even �b� and odd �c� components of Hz�x ,y ,z=0�. FS and FT
stand for Fourier space unit cell and Fourier transform, respectively.
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first and third Fourier space unit cells of the spatial Fourier
transform of Hz

even�x ,y ,z=0� and in the second Fourier space
unit cell of Hz

odd�x ,y ,z=0�. These peaks are numerical arti-
facts resulting from the limited sidelobe suppression in our
discrete-time filtering window.25 Some residual amplitude
corresponding to mode 2A+ remains in Fig. 6, and some
residual amplitude corresponding to mode 2B− remains in
Fig. 5. Our Blackman window is expected to provide about
60 dB of suppression outside of the main filter lobe, and the
residual peaks appearing in Figs. 5�b�, 5�c�, 6�b�, and 6�c�
have been suppressed by approximately this amount. Despite
this issue, the symmetry relation implied by Eq. �7� is clearly
illustrated in Figs. 5 and 6.

D. Understanding the pairwise degeneracy of type B
waveguides

In this section, we provide some physical insight into the
pairwise degeneracy at the Brillouin zone boundary for the
Type B waveguide. Due to the time reversability of Max-
well’s equations, waveguide modes are unchanged if the sign
of the propagation constant is changed as �→−�. When the
transformation �→−� is applied, the original mode is ob-
tained by taking t→−t, where t is time. This allows one to
plot only positive values of � in waveguide dispersion rela-
tions: the dispersion relation can be mirrored about �=0 to
obtain the relation for the negative � values.

As �→� /a, Fig. 5 suggests that mode 2A+ will have
even Fourier series components at �= �. . . ,−3 �

a ,1 �
a ,5 �

a , . . .	.
Similarly, Fig. 6 suggests that mode 2B− will have even Fou-
rier series components at �= �. . . ,−5 �

a ,−1 �
a ,3 �

a , . . .	. Because
waveguide modes are invariant under �→−�, mode 2B−

will have even Fourier series components at −�= �. . . ,−5 �
a ,

−1 �
a ,3 �

a , . . .	 or �= �. . . ,5 �
a ,1 �

a ,−3 �
a , . . .	. This suggests that

when �→� /a, modes 2A+ and 2B− will have Fourier series
peaks with even symmetry at the same points in Fourier
space �insomuch as +� can be considered the same point as
−� which for this disucssion it can be�. A similar argument
may be applied to the odd Fourier series components. There-
fore, when �→� /a modes 2A+ and 2B− have the same
even-odd symmetry along the y direction. This is true for
each pair of modes labeled with + and − signs.

Consider the third line of Eq. �6� which shows that the
effect of operating with ĝ on a representative field compo-
nent is to multiply by �e−i�a/2. Because modes are un-
changed by taking ��, the implications of the relation on the
third line of Eq. �6� are not altered by taking �→−�: the
result of operation by ĝ may be written as �e−i����a/2. We
still have only two eigenvalues characterized by + and −, but

for each of those eigenvalues, the sign of the propagation
constant may be changed without affecting this characteriza-
tion. This modification does not affect the Fourier space
symmetry properties previously discussed in this work. Con-
sider the mode that transforms with a + sign under applica-
tion of ĝ. When �→� /a, its eigenvalue becomes
+e−i��/a�a/2=+e−i��/2= � i. Note that this is really a single
eigenvalue whose duplicitous sign is a result of taking ��.
Similarly, for the mode that transforms with a − sign under
application of ĝ, one gets −e−i��/a�a/2= � i. In these cases,
the � sign corresponds to the same mode �i.e. ���. There-
fore, operation by ĝ at �=� /a is equivalent to �→−� sug-
gesting the ĝ operator has only a single unique eigenvalue at
�=� /a.

Given that the modes labeled + and − evolve to modes
with the same y direction even-odd symmetry at �=� /a and
that the eigenvalues of ĝ switch from two distinct eigenval-
ues to effectively one eigenvalue, it is not surprising that the
bandstructure exhibits pairwise degeneracy at �=� /a. In the
next section we show that the pairwise degeneracy can be
rigorously predicted using space group theory.

IV. SPACE GROUP ANALYSIS OF TWO-DIMENSIONAL
PHOTONIC CRYSTAL WAVEGUIDES

A. Frieze groups: the space groups of two-dimensional
photonic crystal waveguides

In this section we use group theory to characterize the
modes in photonic crystal waveguides. The pairwise degen-
eracy at the Brillouin zone for type B waveguides will be
predicted via nonsymmorphic space group analysis. Group
theory26 has been used in photonic crystal research to under-
stand and classify both extended Bloch modes and localized
defect modes.27–30 The previous literature, however, focused
on point groups. Point groups are subgroups of space groups
and the theory of space groups allows for the classification of
a broader class of photonic crystal lattice geometries. In this
section, we examine the symmetry properties of two-
dimensional photonic crystal waveguides in the context of
space groups and focus on the nonsymmorphic space group
of the type B waveguide.

Space groups,31 consisting of point group operations and
translation group operations, can be described by the Seitz
operator �R � t	 defined by a point operation R followed by a
translation t. Note that in this section, in order to simplify
notation, a symmetry operator will no longer be denoted with

a hat �ˆ�. The Seitz operator operates on an arbitrary position
vector r as �R � t	r=Rr+ t. For a Bravais lattice, its space
group involves all the translations of the lattice vectors that
are linear combinations of the primitive lattice vectors.

TABLE II. Character table of C2v point group.

C2v�2mm� E C2 �x �y

A1 1 1 1 1

A2 1 1 −1 −1

B1 1 −1 1 −1

B2 1 −1 −1 1

TABLE III. Character table of C1h point group.

C1h�m� E �y

A 1 1

B 1 −1
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But this space group may also involve a translation ���
smaller than a primitive lattice translation coupled with a
rotation or reflection. These operations are known as “screw
rotations” and “glide reflections.” A space group is “nonsym-
morphic” if it contains screw or glide operations. Otherwise
it is “symmorphic.” Furthermore, all the elements of a sym-
morphic space group can be written as the direct product
�denoted by �� of translation groups and point groups. This
is not the case for nonsymmorphic space groups. A screw
rotation, whose translation is parallel to the rotation axis,
does not exist when the space dimension is lower than three.
Glide reflection is the only “nonsymmorphic operation” in
the two-dimensional space group.

Among the crystallographic space groups of three-
dimensional lattices, there are 73 symmorphic groups and
157 nonsymmorphic groups. In the case of two-dimensional
lattices, there are 13 symmorphic groups and four nonsym-
morphic groups. These groups are often refered to as wall-
paper groups, due to their likeness to a repeating wallpaper
pattern on a two-dimensional wall or plane. The space group
of two-dimensional patterns containing only one-
dimensional translation is called the Frieze group. This is the
space group of a two-dimensional photonic crystal wave-
guide. It has five symmorphic groups and two nonsymmor-
phic groups.

In Fig. 7, the total number of seven Frieze groups are
labeled and illustrated using simple examples.32 The symbols
for the group starts with “F” as in Frieze. The number “1”
and “2” refers to the rotation operator C1 and C2. “m” indi-
cates the existence of a mirror operation and “g” means a
glide operation. The space group of type A waveguide is
F2mm �symmorphic group� and the space group of type B
waveguide is F2mg �nonsymmorphic group�.

In the following two subsections, we will analyze the type
A and type B photonic crystal waveguides using the Frieze
groups F2mm and F2mg. We choose to work on these two
groups because they are the symmorphic and nonsymmor-
phic Frieze groups of the highest symmetry. The rest of the
five Frieze groups can be constructed by removing one or

two symmetry operations from F2mm or F2mg. Note that these
results can be applied to two-dimensional photonic crystal
slab structures with top and bottom cladding layers so long
as these cladding layers do not break the in-plane symmetry
of the waveguide.

B. Symmorphic space group of type A photonic crystal
waveguides

The symmorphic space group of the dielectric structure of
the type A photonic crystal waveguide F2mm is isomorphic to
the direct product of a translation group and a point group
�Tna � C2v�. The translation group Tna= �E �na	 is Abelian and
has only one-dimensional representations which are complex
numbers. Therefore, we can always analyze the point groups
alone for symmorphic space groups. In the Seitz operator, E
is a unity operator, n is an arbitrary integer and a is the lattice
constant introduced in Fig. 1 and illustrated in Fig. 8. The
point group is C2v= �E ,C2 ,�x ,�y� as illustrated in Fig. 8,
where � is the reflection operator.

The point group of wave vectors �k� �also known as the
“little group”� consists of point group elements that trans-
form k into itself or an equivalent point that is connected by
reciprocal lattice vectors. It is denoted as Gk and is a sub-
group of the point group. In the case of the type A wave-
guide, Gk is a subgroup of C2v. At the Brillouin zone centerF1

F11m

F2

F1m

F2mm

F11g

F2mg

FIG. 7. The seven Frieze groups. �Ref. 32� F11g and F2mg are
nonsymmorphic groups containing glide reflections. The rest are
symmorphic.

σσx

σσy

Type AType A

00 xx

yy

CC2

aa

FIG. 8. �Color online� Illustration of a type A photonic crystal
waveguide and its symmetry operations.

B2

A1

B2

B1

A2

A

B1

A

A

B

B

FIG. 9. �Color online� The dispersion diagram of the type A
waveguide. The representations are assigned according to the Hz

field component of the waveguide mode profiles.
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and edge, Gk=0=Gk=�/a=C2v. For “general” k points inside
the Brillouin zone, the point group is G0
k
�/a=C1h
= �E ,�y�. The character tables of the point groups C2v and
C1h are shown in Tables II and III, respectively. Their com-
patibility relation is evident from the eigenvalues of the �y
operation. The dispersion curves of the type A waveguide are
assigned to the representations in the character tables in Fig.
9 according to the Hz field components of the waveguide
modes. These eigenmodes are irreducible representations of
the group.

Because all the representations of C2v are one-
dimensional, there is no degeneracy imposed by symmetry.
The crossing of waveguide modes “A” and “B” in the middle
of the TE band gap is accidental.

V. NONSYMMORPHIC SPACE GROUP OF TYPE B
PHOTONIC CRYSTAL WAVEGUIDES

The symmetry operations of the type B waveguide are
illustrated in Fig. 10. They include e, c, m, and g, where

e = �E�0	 ,

c = �C2�0	 ,

m = ��x�a/2	 ,

g = ��y�a/2	 . �8�

The coordinate origin is chosen at the center of the C2 rota-
tion, so it is quarter-lattice-constant shifted away from a lat-
tice point along the x direction at the center of the defect
region. The mirror operation �x is thus not with respect to the
vertical line through the origin. The g operator is the glide
reflection.

Being different from the type A case, these nontranslation
operations �e ,c ,m ,g� do not form a group due to the exis-
tence of the glide operation. For example consider g. Then
g2= �E �a	 becomes a pure translation which is not a member
of the nontranslation elements just listed. Therefore, it is not
possible to express the nonsymmorphic group as the direct
product of a translation group and a point group. Further-
more, the translation group, Tna= �E �na	, has an infinite
number of elements. Fortunately, it is an invariant subgroup
�normal divisor�, and we can divide it out. The resulting
factor group can be analyzed with a finite number of ele-
ments and is homomorphic to the original space group.33

At k=0, the whole translation group Tna= �E �na	 is the
normal divisor, since ek�na=e0�na=1. The factor group

F2mg
k=0 /Tna = �eTna,cTna,mTna,gTna�

= ��E�na	,�C2�na	,��x�a/2 + na	,��y�a/2 + na	�

where the elements of the factor group are cosets of the
normal divisor. This factor group is isomorphic to the point
group C2v, and the character table is listed in Table IV. The
representations in Table IV are all one dimensional. There-
fore one expects the type B waveguide bands to be nonde-
generate at k=0.

At k=� /a, the translation group T2na= �E �2na	 is the nor-
mal divisor, since ek�2na=e�/a�2na=1. Then the factor group
F2mg /T2na= �e� , ē� ,c� , c̄� ,m� , m̄� ,g� , ḡ��.34,35 It has eight ele-
ments and they are

e� = �E�2na	 ,

ē� = �E�a + 2na	 ,

c� = �C2�2na	 ,

c̄� = �C2�a + 2na	 ,

m� = ��x�a/2 + 2na	 ,

m̄� = ��x�a/2 + a + 2na	 ,

g� = ��y�a/2 + 2na	 ,

TABLE IV. Character table of the factor group of F2mg
k=0 /Tna.

F2mg
k=0 /Tna eTna cTna mTna gTna

�1 1 1 1 1

�2 1 1 −1 −1

�3 1 −1 1 −1

�4 1 −1 −1 1

mm

gg

Type BType B

00 xx

yy

cc

aa

FIG. 10. �Color online� Illustration of a type B waveguide and
its symmetry operators.

K

K

Γ3

Γ1

FIG. 11. �Color online� The dispersion diagram of the type B
waveguide. The representations are assigned according to the Hz

field component of the waveguide mode profiles.
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ḡ� = ��y�a/2 + a + 2na	 . �9�

This factor group is isomorphic to the point group C4v and its
character is shown in Table V. There are four one-
dimensional representations and one two-dimensional repre-
sentation. For a Bloch wave representation at the Brillouin
zone boundary �k=� /a�, a one lattice vector translation
�E �a	 changes the representation by a minus sign �ek�a

=e�/a�a=−1�. The only representation that changes the sign
for the characters between e�= �E �2na	 and ē�= �E �a+2na	
is K which is two dimensional. K is then the only compatible
representation at k=� /a.

Because K is a two-dimensional representation, the wave-
guide modes of a type B waveguide should be two-fold de-
generate at the Brillouin zone boundary. This explains the
double-degeneracy of all the type B waveguide dispersion
bands at the Brillouin zone boundary. This “bands sticking
together” effect is associated with the glide reflection sym-
metry that makes the space group nonsymmorphic.

The dispersion curves of the type B waveguide are as-
signed with representations from the character tables in Fig.
11, according to the Hz field components of the waveguide
modes. For a general point in the Brillouin zone, none of the
space symmetry operations leave the k vector invariant or
shifted by a reciprocal lattice vector of the waveguide �other
than translation by a�. Therefore, the representation for a
general point in the Brillouin zone is trivial �i.e. the identity
representation� and not labeled.

The two-by-two unitary matrix irreducible representation
of K is shown at the bottom of Table V. It is helpful in
revealing the relation between the real-space field distribu-
tions of the two degenerate modes at the Brillouin zone
boundary. It is apparent that the operators �m ,m�� and �g ,g��

transform one mode to the other with only an extra phase
factor �−1 or i� while the dielectric structure remains the
same after these operations. This implies they share the same
frequency at the Brillouin zone boundary and are, thus, de-
generate there.

VI. CONCLUSION

In this work, we have discussed the symmetry, Fourier
space and space group properties of two-dimensional photo-
nic crystal waveguides. It was shown that the modes of a
type A waveguide can be characterized as even or odd along
the y direction whereas the glide plane in a type B wave-
guide introduces more complicated symmetry properties. In
particular, the modes of a type B waveguide decompose into
spatial Fourier series components with alternating even and
odd symmetry along the y direction. The theory of symmor-
phic and nonsymmorphic space groups was used to classify
the modes of type A and type B waveguides. The results of
the nonsymmorphic space group analysis predict the pair-
wise degeneracy at the Brillouin zone boundary of the type B
waveguide. In addition to its general theoretical interest, this
work is applicable to the design of photonic crystal
waveguides for integrated photonics and slow light applica-
tions.

ACKNOWLEDGMENTS

This work was funded by the Defense Advanced Research
Projects Agency �DARPA� under Contract No. F49620-02-1-
0403. Computation for the work described in this paper was
supported, in part, by the University of Southern California
Center for High Performance Computing and Communica-
tions.

*mock1ap@cmich.edu
1 O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D.

Dapkus, and I. Kim, Science 284, 1819 �1999�.
2 S. J. McNab, N. Moll, and Y. A. Vlasov, Opt. Express 11, 2927

�2003�.
3 H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, H.-K. Yang, J.-H.

Baek, S.-B. Kim, and Y.-H. Lee, Science 305, 1444 �2004�.
4 A. Mock, L. Lu, E. H. Hwang, J. O’Brien, and P. D. Dapkus,

IEEE J. Sel. Top. Quantum Electron. 15, 892 �2009�.
5 L. Lu, A. Mock, T. Yang, M. H. Shih, E. H. Hwang, M. Bagheri,

A. Stapleton, S. Farrell, J. D. O’Brien, and P. D. Dapkus, Appl.
Phys. Lett. 94, 111101 �2009�.

TABLE V. Character table of the factor group of F2mg /T2na. The two-dimensional irreducible represen-
tation �K� is also shown in the unity matrix form.36
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