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Abstract
We show thatWeyl points can be realized in all-dielectric superlattices based on three-dimensional
(3D) layered photonic crystals. Our approach is based on creating an inversion-breaking array of
weakly-coupled planar defects embedded in a periodic layered structure with a large omnidirectional
photonic band gap. Using detailed band structure calculations and tight-binding theory arguments,
we demonstrate that this class of layered systems can be tailored to display 3D linear point degeneracies
between two photonic bands, without breaking time-reversal symmetry and using a configuration
that is readily-accessible experimentally. These results open newprospects for the observation ofWeyl
points in the near-infrared and optical regimes and for the application ofWeyl-physics in integrated
photonic devices.

Stimulated by the extraordinary properties of gra-
phene [1–3], the development of artificial systems
displaying Dirac-like physics has become a very active
research area of condensed-matter science and related
fields [4]. In this context, photonic-crystal structures
[5] and photonic lattices (waveguides arrays) have
emerged as versatile platforms for mimicking with
light waves the electronic transport properties of
graphene [6–30]. Specific examples of the exotic
phenomena enabled by the presence of photonicDirac
cones include conical diffraction [6], pseudo-diffuse
light transport [7], directional optical waveguiding
[8, 9, 11], photonic Klein tunneling [14], angular
selectivity of spontaneous emission [30], pseudo-
magnetic properties in the optical regime [23] and
large-area single-mode behavior [20, 27].

This endeavor for creating photonic-graphene sys-
tems has also inspired novel ways of accessing funda-
mental physical phenomena that, although originally
predicted in the context of condensed-matter theory,
are difficult (if not virtually impossible) to observe in
electronic systems. A good example are Weyl points –
the higher dimensional analogs of photonic Dirac
points. Derived for the first time almost nine decades
ago to describe massless chiral fermions [31], Weyl
points feature unique topological properties from
which rich new physics has been predicted to stem

[32–44]. Remarkably, very recently, the first experi-
mental observations of Weyl points have been repor-
ted in a three-dimensional (3D) double-gyroid
photonic crystal [45] and in Fermi-arc surface states of
TaAs [46, 47]. In this work, we report on a novel route
to realize Weyl points in a layered photonic structure
that is suitable for optical integration. We first obtain
line node dispersion by creating a periodic array of
weakly-coupled planar defects embedded in a 3D pho-
tonic crystal. Then, we break the inversion-symmetry
of the system by varying the interlayer coupling
between every three layers. Using detailed ab initio
electromagnetic (EM) calculations, we show that this
class of systems exhibits Weyl points in their band
structure.

A schematic view of the considered system is dis-
played in figure 1. The underlying 3D photonic-crystal
structure (yellow volumes in figure 1) consists of an
alternating stack of rod layers, formed by a triangular
lattice of dielectric rods of index nb, and hole layers,
consisting of dielectric slabs (also of index nb) milled
by a triangular lattice of air holes. The radius and
height of the dielectric rods are rc and hc, respectively,
whereas the thickness of the dielectric slabs and the
radius of the air holes are rh and hs, respectively. Both
the rod and hole triangular lattices feature the same
lattice constant a. The structure is also characterized
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by a sequential in-plane shift between consecutive
layers. Specifically, the in-plane triangular lattice of
each of the layers is sequentially shifted following
the positions of a ABC stacking, r (0, 0)A = ,

ar (1 (2 3 ), 1 2)B = , ar (1 3 , 0)C = . Note that
the unit cell in the out-of-plane direction (z-direction)
consists of an alternating stack of three rod layers and
three hole layers. This class of structures was proposed
for the first time in [48] as the result of creating an fcc
lattice of overlapping air cylinders in a dielectric med-
ium. Its significance in photonics stems mainly from
their large omnidirectional bandgap (usually larger
than 20% for common integrated photonics materi-
als), its suitability for optical device integration using a
layer-by-layer approach [49], and its highly-con-
trollable optical response through the individual mod-
ification of only one of the layers forming the
structure [50, 51].

As shown in figure 1, in the analyzed structure, a
one-dimensional array of planar defects is embedded
inside the above described layered 3D photonic-crys-
tal. These planar defects are introduced by replacing
each of the rods forming the rod-layers lying at posi-
tion A (within the ABC sequence mentioned before)
by a three-cylinder column made from a defect rod of
index nd (green rods in figure 1) sandwiched by two
short rods of index nb. The defect rods have radius rd
and height hd. The dielectric cylinders on top and bot-
tom have heights hu and hb, respectively, and the same
radius as the rods in the rod-layers (rc). Notably, by
changing the values of hu and hb separately, one can
control the EM coupling between a given planar defect

and its upper and lower nearest-neighbor planar
defects (the couplings between three consecutive lay-
ers are represented by t1, t2, and t3 in figure 1). In addi-
tion, in the realization sketched in figure 1, there are
three hole-layers and two rod-layers separating next-
neighbor planar defects. Placing the planar defects at
closer distances to each other would make the EM
coupling between nearest-neighbor defect planes to
depart from the weak-coupling condition used in our
approach.

We start by analyzing the properties of a config-
uration in which all planar defects forming the array
have the same geometrical parameters (this case corre-
sponds to make t t t1 2 3= = in figure 1). Figure 2 dis-
plays the corresponding band structure, obtained by
assuming the following set of geometrical parameters:
r a0.26c = , h a0.50c = , r a0.45h = , and h a0.32s =
(defining underlying 3D photonic crystal), and
r a0.32d = , h a0.30d = , and h h a0.24u b= = (defin-
ing the defect planes). The refractive indices of the
high-index regions of the system are nb = 3.5 and
nd = 4.0. These values for nb and nd are assumed in all
the calculations shown in this work. Yellow areas in
figure 2 render the projected band structure for the
perfectly periodic 3D photonic crystal (i.e., the photo-
nic crystal without the defect layer). This dispersion
diagram was obtained by plotting the frequencies ω of
the extended bulk states of the system as a function of
the in-plane wavevector along the high-symmetry
directions of the irreducible Brillouin zone (IBZ) cor-
responding to a 3D hexagonal lattice (see inset of

Figure 1. Schematic view of the layered three-dimensional photonic crystal analyzed in this work. Transversal cross-sections of the
rod, hole and defect layers are displayed in the right insets. The geometrical parameters defining each of the layers, as well as the
reference system, are also included in thefigure. The parameters t1, t2 and t3 represent the electromagnetic coupling between the
corresponding planar defects of the array.
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figure 2). Solid blue lines in figure 2 display the disper-
sion relation of modes associated to the array of planar
defects. All the calculations displayed in this work have
been performed with a supercell method using the
MITphotonic-bands package [52].

As deduced from figure 2, the considered 3D pho-
tonic crystal exhibits a large omnidirectional band gap,
centered at a frequency c a0.4550 (2 )ω π= (c is the
speed of light in vacuum) and featuring a gap-midgap
ratio of 19%. Of special interest among the number of
defect bands that can be observed inside this full band
gap is the frequency-isolated band centered at a fre-
quency c a0.4951 (2 )Dω π= that emerges along the
K–H direction (marked by a red arrow in figure 2). An
enlarged view of that band is displayed in figure 3(a)
(see blue solid lines). The physical origin of this band
can be understood by using the following tight-bind-
ing picture of this problem. When isolated in the
underlying 3D photonic crystal, each of the planes
forming the defect array exhibits a frequency-isolated
Dirac cone in the k k( , )x y plane at the K-point [20].
The effective Hamiltonian close to that Dirac point
can be expressed as H k k k( , )x y x x x2D Dω ν σ= + +=

ky y zν σ , where iν are the group velocities and iσ are the
Pauli matrices. Diagonalization of H k k( , )x y2D yields
the canonical Dirac-cone dispersion k k( , )x y2Dω =

k kx x y yD
2 2 2 2ω ν ν± + . When extended to 3D,

H k k( , )x y2D actually describes a line node, i.e., two
bands that are forming a line degeneracy along kz (as
illustrated by the cyan solid lines in figure 3(a)), but
that they disperse linearly along the other two direc-
tions [38, 39]. Now, to describe the array of planar
defects considered in figure 2, we introduce an

additional term (representing the coupling between
next-neighbor planar defects) to the effective Hamil-
tonian, H2D. This yields the following new Hamilto-
nian H H k k t k dk( ) ( , ) 2 cos( )x y z3D 2D= − � (where

k k kk ( , , )x y z= , d is the periodicity of the defect array
along z and � is the unity matrix). Diagonalization of
H k( )3D produces a dispersion relation given by

k k t k dk( ) ( , ) 2 cos( )x y z3D 2Dω ω= − , which agrees
in all 3D with the dispersion obtained from our bands
structure calculations (see green dots and inset of
figure 3(a); the latter shows the Dirac cones obtained
in the k k( , )x y plane for an exemplary k-point along
K–H). Thus, from this analysis we can conclude that a
line node (featuring cosine-like dispersion) emerges in
the considered system as the result of periodically
stacking weakly-coupled planar defects, each of which
exhibits Dirac cones when isolated.

Next, in order to create Weyl points from this line
node, it is crucial to consider the significant funda-
mental differences between Dirac points and Weyl
points. Dirac cones are protected by PT-symmetry,
which is the product of time-reversal symmetry (T)
and parity (P) inversion (note that here we discuss PT-
symmetry only in the context of Hermitian systems).
Weyl points, on the other hand, are topologically pro-
tected gapless dispersions that can exist only when PT-
symmetry is broken. This necessary condition for the
realization of Weyl points can be deduced from the
Hamiltonian that governs Weyl point dispersions,
H k k kk( ) x x x y y y z z zW ν σ ν σ ν σ= + + . Indeed, the
term yσ of H k( )W can exist only when PT-symmetry is
broken [38, 39]. Thus, in order to realize Weyl points
in the analyzed class of systemswithout breaking time-
reversal symmetry, we need to break the inversion-

Figure 2.Photonic band structure of the array of defect planes depicted infigure 1, as computed for a configuration featuring inversion
symmetry (t1 = t2 = t3). The following geometrical parameters have been assumed in the calculations: r a0.26c = , h a0.50c = ,
r a0.45h = , and h a0.32s = , r a0.32d = , h a0.30d = , and h h a0.24u b= = (see the definition of these parameters infigure 1). The
refractive indices of the high-index regions of the system system are nb=3.5 and nd=4.0. Yellow areas display the bulk photonic bands
of the system,whereas the blue solid lines correspond to themodes supported by the planar defects. The inset shows a sketch of the
corresponding 3Dhexagonal first Brilloun zone, together with its corresponding high-symmetry points. The red arrowmarks the
position of the band corresponding to a line node.
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symmetry ( r r( ) (ϵ ϵ= − ), where r(ϵ ) is the dielectric
constant distribution) that the array of planar defects
considered in figure 4(a) features with respect to the
center of the defect rods. To do that, we introduce
three different values (t1, t2, and t3) of the EM coupling
between the planar defects and their corresponding
upper nearest-neighbor defect layers. More specifi-
cally, we create an inversion-symmetry breaking
superlattice of defect layers formed by stacking peri-
odically (following the configuration shown in
figure 1) three different defect layers featuring three
different values of the parameter hu (see definition of
that parameter in figure 1). By varying hu, we modify
the degree of overlap between the evanescent-field tails
of two nearest-neighbor defect layers, and conse-
quently themutual EMcoupling between them.

The first important point to realize regarding the
superlattice described above is that its unit cell along z
is three times larger than of the array discussed in
figure 3(a). The larger unit cell leads to a folding of the

photonic bands along kz (the high-symmetry path of
the IBZ along kz is now three times smaller, which
yields a new limit,H′, of the IBZ along kz). To illustrate
this point, figure 3(b) displays the folded bands of the
same structure considered in figure 3(a) (which still
retains inversion symmetry), but now computed using
an artificial supercell of size d3 along the z direction.
Note that, as can be deduced from tight-binding argu-
ments, the considered three-defect unit cell (featuring
three different couplings t1, t2 and t3) is the minimal
system that breaks PT-symmetry in this structure. A
system featuring only two different couplings (t1 and
t2) always presents inversion symmetry.

The second important point to highlight derives
from the symmetry arguments discussed above. Based
on the fact that Dirac cones are not robust to PT-sym-
metry breaking, we expect that the degeneration
between the two bands forming each of the super-
lattice folded bands (shown in figure 3(b)) is lifted
once the inversion symmetry is broken (i.e., once the

Figure 3. (a) Enlarged view of the bandmarkedwith an arrow infigure 2 (blue solid lines). For comparison, the results corresponding
to the single-defect configuration are also displayed (cyan solid lines). Green dots correspond to the analytical tight-binding
expression discussed in themain text. The inset shows theDirac cones obtained at the indicated point of theK–H path. (b) Computed
band structure of the system considered in (a), but now calculatedwith an artificial supercell three times larger along z. (c) Photonic
band structure of the array of defects depicted in figure 1, as computed for a configurationwith broken inversion symmetry (with
different values of the interlayer couplings t1, t2 and t3). The considered superlattice of defect layers is formed by periodically stacking
three planar defects featuring the following sequence of values for the parameter h au : 0.245, 0.250, and 0.255. (d) Same as (c), but
nowwith a sequence of h au values given by 0.240, 0.250, and 0.260. The insets of both panels render an enlarged viewof the band
crossingmarked by an arrow in the correspondingmain panel.
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three different interlayer couplings t1, t2 and t3 are
introduced into the system). This is apparent from the
band structures rendered in figures 3(c) and (d),
which correspond, respectively, to two superlattices
with increasing asymmetry. Figure 3(c) corresponds
to the following sequence of h au values of the three
defect layers forming the unit cell: 0.240, 0.245, and
0.255. Figure 3(d) corresponds to the following
sequence of h au values: 0.240, 0.250, and 0.260. The
rest of geometrical parameters are the same as those
used for figure 2. As seen, the frequency difference

between the originally degenerated bands increases as
the asymmetry in the system grows. Remarkably, these
results show clearly how the combination of the bands
folding and the degeneracy lift induced by the asym-
metry enables the type of band crossings needed for
the realization of Weyl points. Insets of figures 3(c)
and (d) show enlarged views of the band crossings
found for both configurations at c a0.4945(2 )ω π≈
(the examined crossings are marked with arrows in
their corresponding main panels). As observed, linear
dispersion is obtained near the two considered band

Figure 4. (a) Illustration of the location in thefirst Brillouin zone of the fourWeyl points displayed by the analyzed structure. Blue and
pink circles representWeyl points with opposite Chern numbers. (b) Sketch of the different orientations of the k-space planes
considered in (c). The definition of the rotation angle θ, as well as the intrinsic in-plane reference system of each plane, k k( , )x y′ ′ , are
displayed. The location of the consideredWeyl point is also indicated. (c) Computed projected bands along kx′ corresponding to eight
planes that sample θ in the interval [0, 2 )π as shown in (b).
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crossings (similar linear dispersions were obtained for
the other crossings that can be observed in figures 3(c)
and (d) at c a0.4955(2 )ω π≈ ), which represents a
clear signature of the emergence of Weyl points in this
class of systems.

There are fourWeyl points in the considered struc-
ture, with theirChern numbers (taking values 1+ or 1− )
cancelling each other in pairs (the Chern number of a
Weyl point is defined as the integral—within the 3D
Brillouin zone of the structure—of the Berry curvature
on a closed surface enclosing the consideredWeyl point
[39]). In addition to the two Weyl points discussed
above, there is another pair of Weyl points with oppo-
site chirality. Time-reversal symmetry maps a Weyl
point at k to k− , without changing its Chern number.
Then, the presence in the structure of a mirror sym-
metry plane along z (which crosses the xy-plane along
y=0, see definition of axes infigure 1),maps theseWeyl
points to two Weyl points with opposite Chern num-
bers. Thus, from these symmetry arguments, it derives
that the analyzed system displays a total of four Weyl
points at the boundaries of the first Brillouin zone (see
schematic illustration in figure 4(a)). This is the mini-
mal number of Weyl points possible without breaking
time-reversal symmetry [38].

Finally, to check numerically that the dispersion
relation of the analyzed structure is linear in three-
dimensions around the observed band crossings, we
have carried out extensive numerical calculations of
the projected bands over a large number of planes with
different orientations in k-space. Figure 4(c) sum-
marizes the results obtained for the band crossing dis-
played in inset of figure 3(d) (similar results were
obtained for the other band crossings described
above). The orientation of each k-space plane is
defined by the rotation angle θ defined in figure 4(b).
Specifically, figure 4(c) displays the results corre-
sponding to eight values of θ that sample the interval
[0, 2 )π . Similar calculations were performed for the
same set of angles but replacing the rotation axis by the
ky and kz axes. In all considered cases the projected
bands along the intrinsic kx axis of each of the rotated
planes (labeled as kx′ in figure 4(b)) exhibit a linear
degeneration point at the band crossing, which
demonstrates that the degeneration point observed in
inset offigure 3(d) is indeed aWeyl point.

The proposed class of systems could be experi-
mentally realized in the near-field frequency region
using a lithographic layer-by-layer approach [49].
Hydrogenated amorphous silicon (a-Si:H) and a sili-
con–germanium alloy (such as SixGe x1− with
x = 0.25) could be used for fabricating the underlying
photonic crystal and the defect layers, respectively (the
refractive indexes of these materials at λ=1.55 μm
are similar to the ones employed in our numerical
calculations [53, 54]). On the other hand, it could be
also possible to experimentally realize the proposed
class of systems in the microwave region using an
approach similar to the one described in [45]. Further

optimization of the geometrical parameters of the
structure and the refractive indexes will be required in
order to increase the bandwidth of the Weyl disper-
sion analyzed in this work.

In conclusion, we have presented a novel approach
to realize Weyl points in all-dielectric and integrable
layered photonic systems. We expect our results will
stimulate further research on the experimental obser-
vation of Weyl points in the visible and near-infrared
regimes, with applications in nano-scale coherent light
generation, quantum information processing, and
solar energy harvesting. The analyzed class of systems
also offers a versatile platform for the discovery and
demonstration of novel phenomena in the emerging
field of topological photonics. Furthermore, the
approach introduced in this work can be extended to
obtaining Weyl points in condensed-matter systems
by stacking two-dimensional materials such as gra-
phene andBN [55].
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