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Despite great interest in the quantum anomalous Hall phase and its analogs, all experimental studies in
electronic and bosonic systems have been limited to a Chern number of one. Here, we perform microwave
transmission measurements in the bulk and at the edge of ferrimagnetic photonic crystals. Band gaps with
large Chern numbers of 2, 3, and 4 are present in the experimental results, which show excellent agreement
with theory. We measure the mode profiles and Fourier transform them to produce dispersion relations of
the edge modes, whose number and direction match our Chern number calculations.
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The Chern number [1] is an integer defining the topo-
logical phase in the quantum Hall effect (QHE) [2], which
determines the number of topologically protected chiral edge
modes. The quantum anomalous Hall effect (QAHE) pos-
sesses these same properties as an intrinsic property of the
band structure with time reversal symmetry breaking [3,4].
Recent experiments have discovered the QAHE and its
analogs in ferrimagnetic photonic crystals [5], magnetically
doped thin films [6], and ultracold fermion lattices [7].
However, theChern numbers observed in all of these systems
were limited to !1. Finding larger Chern numbers would
fundamentally expand the known topological phases [8–12].
Here, we provide the first explicit experimental observa-

tion of Chern numbers of magnitude 2, 3, and 4, by
measuring bulk transmission, edge transmission, and the
edge-mode dispersion relations in a ferrimagnetic photonic
crystal. The excellent agreement between the experiment and
the modeling allows us to identify various topological band
gaps and map out the dispersion relations of one-way edge
modes for the first time in any QHE or QAHE system in
nature.
In a 2D system one can realize bands with nonzero

Chern numbers, and generate the QAHE, by applying a
T-breaking perturbation [13–15]. The Chern number is
defined as the integral of the Berry flux over the entire
Brillioun zone. When connected bands are gapped by a
T-breaking perturbation, the bands will exchange equal and
opposite Berry flux at each degenerate point, with the total
Berry flux exchanged determining the Chern number. For
instance, two isolated bands connected by one pair of Dirac
points gapped by T-breaking will acquire !2π Berry flux
(π from each Dirac point) and a Chern number associated
with the band gap (“gap Chern number”) of !1. A general
way to calculate the gap Chern number (Cgap ¼ ΣCi) is to
sum the Chern numbers of all the bands below the band gap
[16]. A band gap with Cgap ¼ 0 is trivial, while a band gap
with Cgap ≠ 0 is topologically nontrivial.

In our previous theoretical study, we found that the
magnitude of the gap Chern number can be increased above
one by simultaneously gapping multiple sets of Dirac and
quadratic degeneracies. If Berry flux from the gapped
degeneracies adds constructively, Cgap can be large. In
Fig. 1(a) we present a theoretical topological gap map for a
2D ferrimagnetic photonic crystal as a function of the
externally applied magnetic field and the frequency, show-
ing nontrivial band gaps withCgap from−4 to 3. We studied
this same square lattice in an experiment to verify these
predictions.
The experimental configuration resembles a prior work

which demonstrated jCgapj ¼ 1 [5]. A square lattice of
ferrimagnetic garnet rods is placed between two conductive
copper plates. This configuration forms a parallel-plate
waveguide, with the electric field perpendicular to the plate.
Since the electric field for the fundamentalmode is constant as
a function of height, this is equivalent to a 2D system. The
modes in thephotonic crystal are excited byantennas attached
to the top plate and fed to a network analyzer. Around the
boundary of the system, we placed an absorber to minimize
reflections and outside interference. We include an overhead
image of one of the crystals we constructed in Fig. 1(d).
To observe the QAHE analog in the experiment, we

break T symmetry by applying a spatially uniform mag-
netic field to the ferrimagnetic garnet rods, which acquire
off-diagonal imaginary parts in the permeability tensor
[18]. Unlike electrons, the external magnetic field does not
interact directly with photons. However, for this system,
Maxwell’s equations can be written in the exact same form
as the Schrödinger equation with a periodic vector potential
[15]. This makes the system an analog of the QAHE. Our
photonic crystals were placed in the Massachusetts Institute
of Technology (MIT) cyclotron magnet, and the magnetic
field was swept between 0.03 and 0.55 T to characterize the
transmission of the photonic crystal as a function of the
magnetic field and the frequency.
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We show the experimental transmission through a bulk
photonic crystal in Fig. 1(c). Here, the color illustrates the
amplitude of the transmission between the antennas in
decibels ½S12 ¼ 20 logðEin=EoutÞ&. In the plots there are
several deep blue regions of low transmission that clearly
correspond to the locations of band gaps in the gap map.
The sweeping feature that extends diagonally across the
figure is due to the gyromagnetic resonance of the
ferrimagnetic garnet rods (see the Supplemental Material
[17]). The resonant frequency of the effective permeability
is plotted with a black line in Fig. 1(a).
In Fig. 1(b) we present the corresponding theoretical

data for transmission through a lattice of the same size
and dimension calculated with COMSOL. One of the trans-
mission simulations is shown in Fig. 1(e). For direct
comparison, the transmission data in Fig. 1(b) are plotted
with the same color bar scale as the experiment in Fig. 1(c).
The slight offset of about 0.04 T in the magnetic field

between the theoretical and experimental plots is caused
by demagnetization (see the Supplemental Material [17]).
Clearly, the theoretical and experimental transmissions bear
strong resemblance to each other and the topological gap
map, showing that a square lattice of ferrimagnetic rods can
contain a wide variety of different Cgap numbers.
Several nontrivial band gaps in Fig. 1 and in the

Supplemental Material [17] occur even at low magnetic
fields. This indicates that topological effects can be
achieved at low applied magnetic fields(∼0.03 T) enabling
various studies and applications. Furthermore, these same
band gaps would remain open at zero external magnetic
field by using ferrimagnetic materials with remanent
magnetization [19]; this way, a future experiment could
be performed even without external magnetic fields.
One-way edge modes are present at the boundary

between two crystals with a nontrivial and a trivial band
gap, respectively, or at the boundary between crystals with
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FIG. 1 (color online). Comparison of theoretical gap map and bulk transmission to experimental transmission measurement in a 2D
ferrimagnetic photonic crystal. (a) Theoretical topological gap map as a function of the magnetic field and the frequency, with each band
gap labeled by its gap Chern number. The diagonal black line indicates the resonance in the effective permeability (see the Supplemental
Material [17]). (b) Theoretical bulk transmission. (c) Experimental bulk transmission. (d) Experimental configuration with the lattice
geometry (top metal plate removed). The antenna locations are marked with 1 and 2. (e) Simulation geometry, with the green line
representing the receiving antenna and the green circle representing the transmitting antenna.
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nontrivial band gaps with different Cgap [4,20]. If the band
gaps of two neighboring crystals overlap in frequency, the
number of edge states in the shared frequency gap is
determined by the difference between the gap Chern
numbers of each crystal. The sign of this difference
determines the directions of the edge states. This means
that with the nontrivial band gaps we found, constructing
one-way waveguides with up to seven modes is possible. If
one of the materials is trivial (Cgap ¼ 0), like metal or air,
the number of edge states equals the gap Chern number of
the crystal, with the sign of this number determining their
directions.
To provide more evidence of the topological state of

these band gaps and the one-way modes, we modified the
setup to include a highly conductive copper boundary at the
edge of the crystal. This boundary acts as a mirror with a

trivial band gap. We place two antennas near this edge on
each side of the sample and measure the transmission
between them. In Figs. 2(a) and 2(b) we present both the
S12 and S21 parameters to describe the direction-
dependent transmission of the edge modes along the metal
boundary. S12 refers to exciting the second antenna and
measuring with the first antenna, while S21 is the opposite.
The band gaps that are nontrivial (Cgap ≠ 0) can be

identified in Fig. 2 because they will have direction-
dependent edge transmission. Specifically, the nontrivial
band gaps measured in Fig. 1(c) will appear in either
Fig. 2(a) or Fig. 2(b), but not both. We show this explicitly
for the Cgap ¼ −4 band gap by highlighting the direction-
dependent transmission with gray boxes. This arises from
the directional edge states as follows. In one direction, the
group velocity of the edge modes is opposite that required

FIG. 2 (color online). Experimental edge transmission measurement and Fourier transform (FT) of mode profiles along the copper
boundary. (a) S21. (b) S12. The band gaps that are nontrivial have direction-dependent edge transmission because the interface of a
nontrivial band gap with a trivial band gap (copper boundary) supports one-way modes. In (a) and (b) this causes the nontrivial bulk
band gaps from Fig. 1(c) to be present in one direction (e.g., S12) and absent in the other (e.g., S21), which we highlight for the
Cgap ¼ −4 band gap with black boxes. The trivial band gaps around 4 GHz do not support one-way modes, and so they do not exhibit
direction-dependent transmission. (c) Experimental FT of edge-mode profiles and the theoretical edge band structures with the edge
modes in red and the bulk bands in gray. The range of wave vectors included in both plots is the same and includes only one Brillouin
zone. The number of one-way edge modes in both sets of panels agrees with jCgapj from Fig. 1(a), while the sign of Cgap is consistent
with the theoretical group velocity (from the edge-mode dispersion) and the directional transmission in (a) and (b).

PRL 115, 253901 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

18 DECEMBER 2015

253901-3



to travel to the receiving antenna, so the transmission
measurement will record the bulk band gap. However, in
the other direction, the group velocity of the edge modes is
in the same direction as is required to get to the receiving
antenna, so the band gap will appear to be nonexistant.
Trivial band gaps (Cgap ¼ 0) around 4 GHz do not support
one-way edge modes and thus do not exhibit direction-
dependent transmission at the edge.
To further study the topological nature of these band

gaps, we measured the mode profile at the edge of the
photonic crystal. We accomplished this by mounting one
antenna for excitation to the lower plate, and another small
dipole antenna for measurement to the upper plate [21].
During the measurement, the upper plate was translated
a total of 47 cm in 2.5 mm steps. At each step both the
phase and the amplitude of the electric field was recorded
(see the Supplemental Material [17]). From this spatial
data, the mode profile in the waveguide can be recon-
structed. The Fourier transform of the mode profile
produces the dispersion relation of the waveguide, which
we present on the left-hand side of Fig. 2(c).
In Fig. 2(c) on the right-hand side, we include a

comparison with the edge band calculations, with the bulk
bands in gray and the edge modes in red. It is clear that the
calculated edge-mode dispersion shows an excellent agree-
ment with the dispersion relations extracted from experi-
ments. The number of edge modes is equal to the gap Chern
number for each inset. The sign of Cgap is consistent with
the group velocity of the edge modes and agrees with the
directional edge transmission data in Figs. 2(a) and 2(b).
In the Supplemental Material [17] we present additional
simulations validating these results for Cgap ¼ −3 and −4.
These results constitute the first direct measurement of
one-way edge-mode dispersion in any QHE system.
To further study the gap Chern numbers of the observed

topological band gaps, we construct a topological one-
way circuit [11]. As illustrated in Fig. 3(d), this consists
of a Cgap ¼ 2 (a ¼ 3.0 cm) crystal and a Cgap ¼ 1
(a ¼ 2.4 cm) crystal, with a copper boundary on the edge.
We present the design and calculations characterizing the
Cgap ¼ 1 crystal in the Supplemental Material [17], while
the results from the Cgap ¼ 2 crystal are shown in Figs. 1
and 2. From the rules described earlier, there will be two
edge states flowing downwards between the metal boun-
dary and the Cgap ¼ 2 crystal, as indicated with arrows in
Fig. 3(d). These edge states will “split” at the junction, with
one edge state flowing away along the boundary between
the Cgap ¼ 1 and the Cgap ¼ 2 crystal and the other
continuing along the metal and Cgap ¼ 1 crystal interface.
In Figs. 3(a)–3(c) we present the transmission between

ports 1–3 and a fourth port located at the junction, as labeled
in Fig. 3(d). The highlighted yellow region indicates the
shared band gap between the Cgap ¼ 1 crystal and the
Cgap ¼ 2 crystal. For each of the measurements, it is clear

that in one direction we have a strong band gap, with a signal
level at the noise floor of about −100 dB, while in the
opposite direction there is 50 to60dBmoreof a transmission.
These edge state directions are consistent with the theoretical
predictions and prove the existence ofCgap > 1 for the upper
crystal. The results from Fig. 3 were obtained under an
applied magnetic field of 0.365 T, although there was a
window extending from approximately 0.32 to 0.4 T, where
the Cgap ¼ 2 and Cgap ¼ 1 band gaps from each crystal
were well aligned (see the Supplemental Material [17]).
In conclusion, we experimentally constructed a square

lattice ferrimagnetic photonic crystal with a band structure
comprising high Cgap (−4 to 3) band gaps and measured the
dispersion relations of the multimode one-way edge wave-
guides. Fundamentally, having band gaps with higher gap
Chern numbers greatly expands the phases available for
topological photonics. These results can potentially enable
multimode one-way waveguides with high capacity and
coupling efficiencies, as well as many other devices
[22–25]. A topological photonic circuit can also be made
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FIG. 3 (color online). Topological one-way circuit imple-
mented using Cgap ¼ 1 (a ¼ 2.4 cm) and Cgap ¼ 2 (a ¼ 3.0 cm)
photonic crystals. (a)–(c) Transmission plots showing edge
transmission between antennas at 1, 2, and 3, and antenna 4
located at the center. Shared bulk band gap for Cgap ¼ 1 and
Cgap ¼ 2 crystals is highlighted in yellow. (d) Experimental
configuration illustrating crystals with copper boundary
(Cgap ¼ 0) on the left and antenna locations 1–4. Arrows indicate
the theoretical direction and the number of the edge states at
each interface. The transmission data is consistent with predicted
edge state directions, which confirms that the upper crystal
has Cgap > 1.
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by interfacing photonic crystals with various Cgap’s, with
one-way edge states combining together or splitting off at the
junctions. Given the rapidly expanding literature on the
QAHE and its analogs for jCgapj ¼ 1 [4,26–31], many more
avenues of research are now possible because of the greater
range of topological phases that can be investigated.
Our approach can be readily extended to other systems of
bosonic particles such as magnons [32], excitons [33], and
phonons [34,35].
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Appendix A: Experimental Methods

The experimental setup, for the bulk and edge transmission measurements, consisted of two

parallel copper sheets 1 m by 0.5 m attached to aluminum plates for mechanical stability and were

separated by 0.635 cm (0.25 in). In the range of frequencies studied in this work, the sheets only

supported modes which had a uniform electric field perpendicular to the plane and the magnetic

field in-plane. Even though the experiment was in a 3D system, the modes are effectively uniform

in the perpindicular direction and so can be represented by 2D TM simulations. Microwave ab-

sorbers placed around the boundary absorbed stray radiation and helped reduce the noise floor of

the measurements.

The ferrimagnetic material used to make the crystals was obtained from TCI cermaics (NG-

1850) and consisted of rods 0.795 and 0.823 cm in diameter and 0.635 cm tall. The smaller rods

were used to construct the 2.4 cm square lattice used for the Cgap = 1 photonic crystal in Fig. 3,

and in the supplementary material. The larger rods were used to construct the 3 cm lattice in Fig.

1-3. The rods had a saturation magnetization (4⇡Ms) of 1817 Gauss and a permittivity of 14.23.

The loss tangent of the material was 2 ·10�4 and the gyromagnetic resonance loss width (�H) was

17Oe. The rods were produced from the same production batch so that the material parameters

were uniform. They were machined down to different radii to optimize the overlap and size of the

Cgap = 1 and Cgap = 2 bandgaps for the splitter experiment presented in Fig. 3. The material

had very little hysteresis (and residual magnetization) overall since measurements conducted with

increasing, versus decreasing, magnetic field were indistinguishable.

For the mode profile measurements we used a set of lighter and smaller aluminum plates to

facilitate easier translation of the upper plate. The aluminum itself is sufficiently conductive for

most microwave experiments. The transmitting antenna was mounted to the lower plate, while the

receiving antenna was mounted to the upper plate. The upper plate slid along on top of two alu-

minum bars which were approximately 1 mm higher than the ferrimagnetic rods in the experiment.

This gap between the upper plate and the rods was necessary for maintaining smooth translation,

and does not invalidate the approximate 2D simulations we used for modeling [1]. The key for a

successful mode profile measurement was smooth translation of the upper plate and a consistent

metal to metal contact of the supporting bars and the upper plate.

We used a 8719C HP network analyzer for the transmission and mode profile measurements,

and a LakeShore Model 410 Gaussmeter for measuring the magnetic field inside the MIT cy-
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clotron magnet. Approximately one hundred transmission measurements were made while the

magnetic field was swept between 0.03 T and 0.55 T. The frequency data was smoothed over the

neighboring 4 points in post-processing. The experimental results presented in Fig. 1 and in the

corresponding plot in the supplementary material were calibrated using the S12 parameters calcu-

lated for the antennas inside the parallel plate waveguide without the lattice of ferrimagnetic rods.

This calibration helped remove the variation in transmission with frequency that results from the

intrinsic impedance mismatch of the antenna. All transmission results were normalized by the

maximum transmission. No such normalizations and smoothings were carried out for the mode

profile results.

Appendix B: Material Model

Under an applied magnetic field, the permeability tensor of the ferrimagnetic garnet takes the

following form[2]:

[µ] =

2

6664

µ ik 0

�ik µ 0

0 0 µ

3

7775

Where µ = µ0(1 + !0!m

!2
0�!2 ) and k = µ0

!!m

!2
0�!2 . The gyromagnetic resonance frequency, !0(=

µ0�Hint), and !m(= µ0�M ) are determined by the internal magnetic field Hint and the magneti-

zation M where � is the gyromagnetic ratio. The internal magnetic field, Hint (=H �XM(H)),

is the difference between the external magnetic field H and the demagnetization field XM(H),

where X is the geometry-dependent demagnetization factor and M(H) is the magnetization func-

tion. For our theoretical calculations we took M(H) = Msat, and Hint = H , since we did not

know the low field behavior of M(H). This approximation causes the small offset of about 0.04

T visible between our transmission experiments and calculations in Fig. 1 and Fig. S3.

The diagonal sweeping features in Fig. 1,2, S3-4, and S7-8 that go from low frequency and

low magnetic field, to high frequency and high magnetic field are caused by the resonant peak of

the effective permeability (µeff = µ2�k2

µ
[2]). The resonance frequency of the effective permeabil-

ity is
p

!0(!0+!m)

2⇡ . It is important to note that this is different than the gyromagnetic resonance

frequency(= !0
2⇡ ), which is lower. Bandgaps to the left of this resonance, tend to move upwards in

frequency as the magnetic field is increased because the index of the rods(= p
✏µeff ) is becoming
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smaller as µeff decreases. On the other side of the resonance, the bandgap frequencies tend to shift

downward as the magnetic field is decreased because the index is increasing as µeff increases.

Loss is included in all of the previous calculations by taking !0 ! !0 + iµ0��H
2 , where �H is

the gyromagnetic resonance width.

Appendix C: Mode profile measurement and Cgap = �3 and �4 comparison to simulation

FIG. S1. Phase and amplitude measurements for 4.5 cm by 0.735 cm rectangular waveguide with Fourier

transform of calculated mode profile. a) Amplitude measured in waveguide from 0 to 50 cm b) Phase c)

Fourier transform of electric field computed from the measured amplitude and phase data. The peaks of the

Fourier transform appear in red, and their dispersion matches the theoretical predictions in black. Note that

the peaks on the right side (the forward propagating waves) are higher in amplitude. The amplitude of the

forward propagating wave is higher than the backward propagating one because of absorption at the end of

the waveguide by the microwave absorber.

In Fig. S1 we present the procedure for extracting the dispersion relation of a rectangular

waveguide from the mode profile. For this measurement we constructed a 50 cm long rectangular

waveguide 0.735 cm tall and 4.5 cm wide. We placed microwave absorbers at the ends of the

waveguide which minimized reflections.We first present the raw amplitude and phase data in Fig.

S1a and b. The phase and amplitude for the entire range of frequencies was acquired during a

single measurement at a specific position in the waveguide. We combined the phase and amplitude

data to calculate the electric field along the edge. After we have the total mode profile, we take

the Fourier transform to find the peaks in k-space corresponding to the propagating modes. In Fig.

S1c, we plot the FT as a function of frequency and wavevector, allowing visualization of the mode
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dispersion in the waveguide. The location of the FT peaks matches the theoretically-predicted

dispersion relations which are in black. Note there is more energy on the forward propagating

branch of the dispersion relation, than the backward propagating one. The phase and amplitude

information from the measurement allows us to completely reconstruct the backward and forward

propagating modes independently.

FIG. S2. Fourier Transform of experimental and simulation data compared to computed bandstructure for

Cgap = �3 and �4 from Fig. 2 in main text. Regions of interest are highlighted in yellow. a) FT of

experimentally measured mode profile. b) FT of simulated mode profile in geometry closely matching

experiment. c) Supercell calculation for bulk and edge bands. Note that in the bandgap we have forward

and backward propagating modes, but that each set of these modes is localized to opposite edges. d)-f) The

same data sets for Cgap = �4. The excellent agreement between these figures provides further evidence for

the experimental observation of multiple one-way edge modes.

In Fig. S2 we present a comparison between Fourier transforms computed from simulation

and experiment, and calculated supercell bandstructures for Cgap = �3 and �4 from Fig. 2

in the paper. We have highlighted the regions of interest in yellow. In interpreting the results

it is important to understand some fundamental features of the Bloch modes propagating in the
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lattice. In general the electric field Ez in periodic media can be written as u(x, y)eikx where

u(x, y) = u(x + a, y) is the envelope function and k is the wavevector, we can rewrite this by

expanding u(x, y) in its spatial Fourier components:

Ez(x, y) = u(x, y)eikx =
X

G

aG(y)e
i(k+G)x (C1)

We can make several important observations about this result. The most important is that we

will potentially observe multiple ‘copies’ of a single dispersion relation, shifted by reciprocal

lattice vectors G. These copies are clearly visible in the experimental and theoretical results in

Fig. S2a and S2b, where we have seperated each BZ by vertical black lines.

Another important fact is that the Fourier coeffecients aG are functions of y. This means to

reproduce the experimental results precisely that the exact positions of the excitation and mea-

surement antennas have to be known, in addition to the distance between the metal boundary

and the photonic crystal. In Fig. S2b we attempted to reproduce the experimental geometry as

closely as possible. Despite many variables and nonidealities, the FT from the simulated mode

profile bears close resemblance to that measured in experiment, providing further evidence for the

observation of multiple one-way modes.

Finally in Fig. S2c we present supercell calculations for the bulk and edge bands. Careful study

reveals that many bright-spots in the Fig. S2a and b can be traced back to certain bands which

are being excited. Note that the supercell calculations in general include forward and backward

propagating modes, but that inside the bandgap, one edge mode dispersion is localized to one end

of the computational cell, while the other, oppositely traversing mode is on the opposite side, so

in experiment and simulation only one set will be observed.

Appendix D: Cgap = 1 (a=2.4 cm) photonic crystal

In Fig. S3 and Fig. S4 we present the experimental results for the bottom photonic crystal

used for the splitter in Fig. 3, which had a lattice period of 2.4 cm. Fig. S3 shows the agreement

between the theoretical gap map, theoretical bulk transmission, and experimental transmission.

This crystal was selected because the Cgap = 1 bandgap (the one to the right of the resonance)

occurs in the same frequency and magnetic field ranges as the Cgap = 2 bandgap in the photonic

crystal from Fig. 1 and 2, which we discuss in Appendix D. Fig. S4 shows the edge transmission

measurements, and these are consistent with the Chern number and edge mode dispersion from
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FIG. S3. Comparison of theoretical gap maps and bulk transmission to experimental transmission measure-

ment in a 2D ferrimagnetic photonic crystal for Cgap = 1 (a=2.4 cm) crystal from Fig. 3. a) Theoretical

topological gap map as a function of the magnetic field and the frequency with each bandgap labeled by its

gap Chern number. The black diagonal line indicates the resonance in the effective permeability (Appendix

B) b) Theoretical bulk transmission c) Experimental bulk transmission d) Experimental configuration with

the lattice geometry (top metal plate removed). The antenna locations are marked with “1” and “2”. e) Sim-

ulation geometry with the green line representing the receiving antenna, and the green circle representing

the transmitting antenna.

the edge mode calculations. The large Cgap = 1 bandgap occurring at low magnetic fields is

potentially useful for applications. This bandgap can alternatively potentially be opened without

an external magnetic field by using a ferrimagnetic material with remanent magnetization.
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FIG. S4. Experimental edge transmission measurement along copper boundary for Cgap = 1 (a=2.4 cm)

crystal from Fig. 3. a) S21. b) S12. The bandgaps that are nontrivial have direction-dependent edge trans-

mission, because the interface of a nontrivial bandgap with a trivial bandgap (copper boundary) supports

one-way modes. In a) and b) this causes the nontrivial bulk bandgaps from Fig. S3 to be present in one

direction (e.g. S12) and absent in the other (e.g. S21). The trivial bandgaps around 5 GHz do not support

one-way modes, and so do not exhibit direction-dependent transmission. c) Experimental configuration

with the antenna locations and the copper boundary. Insets on the left and right side of a) and b) respec-

tively show edge band calculations with the edge modes in red and the bulk bands in blue. Each supercell

calculation applies to a) and b) even though each is shown on only one side for clarity. The number of

one-way edge modes corresponds to |Cgap| from Fig. S3a, while the sign of Cgap is consistent with the

theoretical group velocity (from the edge mode dispersion) and the directional transmission in a) and b).
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FIG. S5. Alignment of bandgaps for Cgap = 2 (a=3.0 cm) crystal and Cgap = 1 (a=2.4 cm) crystal from

Fig. 3 splitter. a) Transmission for a=3 cm crystal. The nontrivial Cgap = 2 bandgap used in the Fig.

3 splitter experiment is boxed in black. b) Transmission for a=2.4 cm crystal. The nontrivial Cgap = 1

bandgap used in the Fig. 3 splitter experiment is boxed in black. The Cgap = 2 bandgap and Cgap = 1

bandgap from each crystal show good frequency alignment over a range of magnetic fields from 0.32 T to

0.4 T

Appendix E: Bandgap alignment between Cgap = 2 (a=3.0 cm) and Cgap = 1 (a=2.4 cm) photonic

crystals

We designed each crystal in the Fig. 3 splitter experiment so that a nontrivial Cgap = 2 bandgap

from one crystal would be well aligned at a certain magnetic field with the Cgap = 1 bandgap of

another crystal for a sufficiently large range of frequencies. The Cgap = 2 crystal was studied in

Fig. 1 and 2, and consisted of a square lattice of rods with lattice constant 3 cm. The Cgap = 1

crystal was studied in Fig. S3 and S4, and consisted of a square lattice of rods with lattice constant
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FIG. S6. One-way Topological Photonic Circuit. Photonic one-way circuit which can be constructed using

the topological bandgaps we found. Arrows represent one-way edge modes and each crystal is labeled by

its gap Chern number.

2.4 cm. The transmission measurements showing the bandgaps of each crystal are presented in Fig.

S5 with the location of each bandgap highlighted with a black box. For the Cgap = 1 bandgap and

the Cgap = 2 bandgap, there is significant frequency overlap between the bandgaps for magnetic

fields between approximately 0.32 T and 0.4 T. This overlap was acheived through theoretical

calculations and experimental tuning of the lattice constant.

Appendix F: One-way Topological Photonic Circuit

We include an example of a topological photonic circuit using the topological bandgaps we

found in Fig. S6. We assume in this figure that each topological bandgap for each topological

“block” is perfectly aligned in frequency with all of the others. Each topological “block” is labeled

with its gap Chern number. At the junction between three bulk domains, one-way edge states

merge together or branch off, enabling new device functionalities as signal combiners and photonic

logic gates immune to backscattering from manufacturing imperfections.

Appendix G: Chern Number Sums

In Fig. S7 and S8 we present the topological gap maps for the photonic crystals we constructed

along with insets illustrating the detailed bandstructure at the minimum and maximum magnetic

fields. Each band in the insets is labeled with its Chern number. The sum of the Chern numbers
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FIG. S7. Calculation of Cgap by summing Chern numbers below bandgap for the Cgap = 2 (a=3.0 cm)

crystal from Fig. 1,2, and 3. On each side of the gap map we have included bulk bands labeled with their

Chern numbers. The sum of the Chern numbers of bands below a given complete bandgap is the gap Chern

number.

of all bands below a given bandgap is the gap Chern number[3]. We labeled each band in the gap

map with its gap Chern number determined with this rule. The insets were computed using fixed

point iteration, while the gap map was computed using transmission calculations as detailed in

Appendix G.

Appendix H: Numerical Methods

The bandstructure and transmission plots in this work were calculated using COMSOL which

utilizes the finite element method. The Chern numbers of each bulk band were calculated using a

custom made finite-difference frequency-domain code.
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crystal from Fig. 3, S3, and S4. On each side of the gap map we have included bulk bands labeled with

their Chern numbers. The sum of the Chern numbers of bands below a given complete bandgap is the gap

Chern number.

For the bandstructure calculations, we solved a Hermitian eigenproblem of the following form

in COMSOL.

r⇥ (µ�1r⇥ ~E) = ✏!2 ~E

Since ferrimagnetic materials are dispersive (µ depends on !), this is a nonlinear eigenproblem.

Even though COMSOL can only solve linear eigenproblems, we can still find the solution to the

nonlinear eigenproblem using fixed-point iteration. In this method the material parameters are

evaluated at a trial frequency so that the normal linear eigenvalue problem can be solved. The new

solution is used to evaluate the material parameters again, and if the initial guess is close enough,

the frequency will converge with enough iterations. We applied fixed-point iteration to calculate

the bandstructures in Appendix F.
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For the supercell calculations in the paper, the linear eigenvalue problem was solved with ma-

terial parameters evaluated at the midgap frequency. Material dispersion will cause the bandgaps

to become smaller without effecting the topological properties. Consequently we did not include

dispersion in the supercell calculations since they contained a large number of bands and would

consequently take too many computing hours. The supercell calculations were computed using 15

unit cells of the photonic crystal joined at the ends either with periodic boundary conditions, in the

case of the bulk calculations, or metallic boundary conditions, for edge-mode calculations.

The transmission was also calculated with COMSOL by solving for the time-harmonic solution

at a given frequency and magnetic field. For these calculations the source “antenna” was repre-

sented by three point current sources of equal magnitude in the normal direction within a single

unit cell of the crystal. The receiving antenna was represented by a short line on the other side of

the crystal over which the power was integrated. The boundaries of the crystal were padded with

perfectly matched layers. The effects of material loss and material dispersion were included in the

calculation.

Additional transmission simulations were conducted to find the gap map in Fig. 1a and in the

supplementary material. In order to sample the full k-space, the receiving boundary was expanded

to receive all unique incoming waves from the current sources. The low transmission regions were

identified and used to create the gap map. The locations of these gaps are consistent with the

bandstructure calculations as shown in Fig. S7 and Fig. S8. Here the fixed-point iteration and

transmission methods show good agreement in regimes of low dispersion and loss.
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