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Topological semimetals with helicoid
surface states
Chen Fang1,2*†, Ling Lu1,2†, Junwei Liu1 and Liang Fu1*

We show that the surface dispersions of topological semimetals map to helicoidal structures, where the bulk nodal points
project to the branch points of the helicoids whose equal-energy contours are Fermi arcs. This mapping is demonstrated in the
recently discovered Weyl semimetals and leads us to predict new types of topological semimetals, whose surface states are
represented by double- and quad-helicoid surfaces. Each helicoid or multi-helicoid is shown to be the non-compact Riemann
surface representing a multi-valued holomorphic function (generating function). The intersection of multiple helicoids, or
the branch cut of the generating function, appears on high-symmetry lines in the surface Brillouin zone, where surface
states are guaranteed to be doubly degenerate by a glide reflection symmetry. We predict the heterostructure superlattice
[(SrIrO3)2(CaIrO3)2] to be a topological semimetal with double-helicoid surface states.

The study of topological semimetals1,2 has seen rapid progress
since the theoretical proposal of a three-dimensional Weyl
semimetal in a magnetic phase of pyrochlore iridates3. In

general, topological semimetals are materials where the conduction
and the valence bands cross in the Brillouin zone and the crossing
cannot be removed by perturbations preserving certain crystalline
symmetry such as the lattice translation. Bloch states in the vicinity
of the band crossing possess a non-zero topological index—for
example, the Chern number in the case of Weyl semimetals. The
nontrivial topology gives rise to anomalous bulk properties of
topological semimetals such as the chiral anomaly4–6. Several classes
of topological semimetals have been theoretically proposed so far,
including Weyl3,7–15, Dirac16–20 and nodal line semimetals2,8,20–32,
some among which have been experimentally observed33–49.

Surface states of topological semimetals have attracted much
attention. On the surface of a Weyl semimetal, the Fermi surface
consists of open arcs connecting the projection of bulk Weyl points
onto the surface Brillouin zone3, instead of closed loops. The
presence of Fermi arcs on the surface is a remarkable property that
directly reflects the nontrivial topology of the bulk, and plays a key
role in the experimental identification of Weyl semimetals34,35,38. In
contrast, as shown by recent theoretical works21,24,26,27,30,50,51, existing
Dirac and nodal line semimetals do not have robust Fermi arcs that
are stable against symmetry-allowed perturbations. Therefore, the
general condition for protected Fermi arcs to appear in topological
semimetals remains an open question.

In this work, we report the discovery of a new topological
semimetal phase in a wide variety of non-symmorphic crystal
structures with the glide reflection symmetry, a combination of
a reflection and a half-lattice translation. Such non-symmorphic
topological semimetals have either Dirac points or Weyl dipoles
in the bulk, which are associated with a Z2 topological invariant
that we define. These band crossing points are pairwise connected
by symmetry-protected Fermi arcs on the surface, with a unique
connectivity determined by the Z2 topological charge. These surface
states have a energy–momentum dispersion that can be mapped
to an intersecting multi-helicoid structure, where the intersections

between helicoids are protected from being gapped by non-
symmorphic symmetries, and are hence dubbed ‘helicoid surface
states’. By relating the Z2 topological index to rotation eigenvalues
of energy bands, we provide a simple criterion for the non-
symmorphic topological semimetal phase and predict its material
realization in the recently synthesized superlattice heterostructure
of iridates52 [(SrIrO3)2m(CaIrO3)2n]. Interestingly, we find that each
multi-helicoid structure is the non-compact Riemann surface53 of
a generating function: a multi-valued holomorphic function whose
singularities correspond to the projections of the bulk nodes.

Helicoid surface states of Weyl semimetals: a revisit
We start by considering the energy–momentum relation E(k‖) of
the surface states of Weyl semimetals, where k‖ is the surface
momentum. E(k‖) is bounded by the bulk conduction and valence
band edges in the bulk cones (see the head-to-head cones in Fig. 1a),
obtained by collapsing energies of bulk states with the same k‖
at different perpendicular momenta kz . In the most generic case,
we assume that there be Ns surface bands, E1(k‖)<E2(k‖)< · · ·<
ENs(k‖). Consider a loop in the surface Brillouin zone enclosing the
projection of the Weyl point. The Chern number of the Weyl point
dictates that3 the surface dispersion along the loop must be chiral,
such that as a k-pointmoves one round along the loop anticlockwise
(clockwise), the energy of the state does not return to the same
value, but moves one band higher (lower), that is, En(k‖)→En+1(k‖)
(En(k‖)→ En−1(k‖)). As k‖ keeps circling the loop anticlockwise
(clockwise), the band index keeps increasing (decreasing) before the
state merges into the conduction (valence) bulk. In this process, the
dispersion along the loop maps out a spiral54 that connects the two
bulk cones, and as one sweeps the radius of the loop, the spirals at
different radii form a helicoid, as shown in Fig. 1a. For any given
energy, each spiral crosses the energy an odd number of times, so the
iso-energy contour of the helicoid must be an open arc emanating
from the centre.

The winding of the energy dispersion along any loop enclosing
the Weyl point is the same as the winding of the phase of a
holomorphic function along any loop enclosing a simple (linear
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Figure 1 | The helicoid and double-helicoid surface states. a, Surface dispersion near the projection of a Weyl point with Chern number+1, where the red
solid cones are the projection of the bulk states and the helicoid sheet represents the surface states. This is also the Riemann surface of Im[ log(q)].
b, Surface dispersion near the projections of a pair of Weyl points with opposite Chern numbers, where the red and the blue cones represent the bulk states
projection, and the green contour is an iso-energy contour also known as a Fermi arc. This is also the Riemann surface of Im[ log(q−k1/q−k2)]. c, Surface
dispersion of the non-symmorphic Dirac semimetal near the Dirac point, where the grey cones represent the projection of bulk states. This is also the
Riemann surface of the generating function given in equation (4) in the text. d, Surface dispersion near two non-symmorphic Dirac points, with iso-energy
contours of two Fermi arcs.

order) zero in complex analysis. Near a simple zero, a general
holomorphic function takes the form f (z)=z−z0+O[(z−z0)2] up
to an overall factor. As z goes around z0 anticlockwise (clockwise),
the phase of f (z) increases (decreases) by 2π. Therefore, the phase
of f (z) near z0, or the imaginary part of log[f (z)], is topologically
equivalent to the dispersion of the surface states near the projection
of a positive Weyl point. Similarly, one can show that the phase
of a holomorphic function near a simple pole is equivalent to the
energy dispersion near the projection of a negativeWeyl point. This
topological equivalence can be expressed as

E(q‖)∼ Im[log(q±1)] (1)

where q‖ is the surface momentum relative to the Weyl point
projection and q= qa + iqb, and ±1 corresponds to Weyl point
of positive and negative monopole charge. There is one caveat in
understanding equation (1): although the generating function on
the right-hand side ranges from negative to positive infinity, the
energy of the surface bands always merges into the bulk. This
infinite winding of the surface dispersion implies that the theory
cannot be made ultraviolet-complete in two dimensions, but is
consistent only for the surface states of some topologically nontrivial

three-dimensional (3D) bulk: a demonstration of the bulk–edge
correspondence principle in Weyl semimetals.

In complex analysis, the plot of the real or the imaginary
part of a multi-valued holomorphic (meromorphic) function is
called a Riemann surface, which is a surface-like configuration
that covers the complex plane a finite (compact) or infinite
(non-compact) number of times55. Equation (1) establishes the
topological equivalence between the surface dispersion of a Weyl
semimetal and a non-compact Riemann surface. Both share the
following characteristic feature: there is no equal-energy (equal
height) contour that is both closed and encloses the projection of
the Weyl point, a feature that directly leads to the phenomenon of
‘Fermi arcs’. This topological equivalence can be extended to the case
ofmultipleWeyl points. If there are projections of twoWeyl points at
(k1a,k1b) and (k2a,k2b), then the corresponding generating function is
simply log[(q−k1)(q−k2)−1], where ki=kia+ ikib, whose imaginary
part is plotted in Fig. 1b. Cutting the dispersion at any energy, the
iso-energy contour is an arc connecting k1 and k2.

Double-helicoid surface states
A Dirac point can be considered as the superposition of two Weyl
points with opposite Chern numbers16,17, as the 3D massless Dirac
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Figure 2 | Lattice and electronic structure of the iridates superlattice. a, Brillouin zone and (001)-slab surface Brillouin zone of an orthorhombic lattice
with a glide reflection, where the lines of double degeneracy are marked in blue and the Dirac points and their projections are marked by large grey dots.
Each Dirac cone can be considered as superimposed positive and negative Weyl cones (red and blue cones centered at the grey dots). b, One unit cell of
heterostructure superlattice [(SrIrO3)2m(CaIrO3)2n] with m=n= 1. c, The bulk band structure of the superlattice along the path YTUXSY, calculated from
first principles. d, The zoomed-in band structure of the same system near X, where the first-principles results (red dots) are fitted using a tight-binding
model modified from the one used in ref. 29 (blue line).

equations decouple into two sets of Weyl equations56. The surface
state near the projection of a Dirac point is hence a superposition
of a helicoid and an anti-helicoid, as shown in Fig. 1c, which
cross each other along certain lines, and may have two Fermi
arcs17,18,47. Yet, if there be no additional symmetry that protects
their crossing, hybridization along the crossing lines opens gaps.
Then the double-helicoid structure of the surface dispersion is lost
and the Fermi arcs also disappear. This has been the case for all
Dirac semimetals discovered so far. Below we show that a non-
symmorphic symmetry31,57–65 protects the crossing and with it the
double-helicoid surface states.

Consider a three-dimensional system with the following
symmetries: a glide reflection, G, that reverses the a-direction
then translates by a half-lattice constant along the b-direction, and
time-reversal symmetry, T . Define the anti-unitary symmetryΘ as
their composition

Θ≡G∗T : (x ,y ,z , t)→(−x ,y+1/2,z ,−t) (2)

where (x , y , z) are the spatial coordinates along the a, b, c-axes in
units of the corresponding lattice constants. Equation (2) implies
that the momentum of a single quasiparticle, (ka, kb, kc), is sent to
(ka,−kb,−kc). Importantly, for the square ofΘ we have

Θ2
=G2T 2

=T010=e−ikb (3)

where T010 is the unit lattice translation along the b-direction.
In particular, at the Brillouin zone boundary kb = π, we have

Θ2
=−1. This leads to double degeneracy of all states on two high-

symmetry lines, UR and XS, analogous to the well-known Kramers’
degeneracy66 (blue lines in the 3D Brillouin zone of Fig. 2a), with
the key difference that whereas the latter leads to double degeneracy
at high-symmetry points in a spinful system, Θ leads to double
degeneracy along the whole high-symmetry lines in both spinful
and spinless systems.

Then we consider the states on the (001)-surface. In the surface
Brillouin zone, equation (3) leads to double degeneracy along X̄M̄
(blue line in the surface Brillouin zone of Fig. 2a). This degeneracy
is exactly what is needed to protect the double-helicoid surface
states shown in Fig. 1c: if there be the projection of a Dirac point
on X̄M̄ and the two helicoids intersect along X̄M̄, the symmetry-
guaranteed double degeneracy disallows their hybridization. In the
double-helicoid dispersion, each iso-energy contour must contain
two arcs emanating from the projection of theDirac point. Owing to
time reversal, each projection of theDirac point at D̄ is accompanied
by one at−D̄. The surface dispersionwith twoDirac points is shown
in Fig. 1d, and each iso-energy contour contains two arcs connecting
D̄ and−D̄.

As the surface dispersion near a Weyl point projection can be
mapped to the Riemann surface of log(z), a natural question is if
the surface dispersion of the Dirac semimetals can also be mapped
to some non-compact Riemann surface representing a holomorphic
function. The configuration of two surfaces crossing along certain
lines reminds us of the Riemann surfaces of holomorphic functions
involving a fractional power. For example, f (z)=

√
z2 has two

branches f±(z)=±z , and the imaginary parts of the two branches
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meet each other at the real axis, as Im(z)= Im(−z)= 0 for z ∈R.
Because the dispersion near the positive and the negative Weyl
points are mapped to the phases of z and z−1, what we are looking
for is a homomorphic function whose two branches are log z and
logz−1. These considerations lead to the following choice

E(q‖)∼ Im[log(q+q−1+
√

q2+q−2−2)] (4)

where q=k− D̄.
According to the bulk–edge correspondence principle, the

nontrivial surface state protected by Θ suggests a nontrivial bulk
topology near each Dirac point. In the main text, for concision, we
make only the following remarks and leave the detailed discussion of
bulk topology to theMethods: aDirac point is either onXSorUR; on
a sphere enclosing the Dirac point, there is a Z2 topological invariant
protected byΘ ; if inversion is also present and if the system is spinful
(with SOC), the invariant can be expressed in terms of rotation
eigenvalues of bands along XS or UR, analogous to the Fu–Kane
formula for topological insulators67. Define R2=P ∗G, where P is
inversion, then R2 is either a two-fold rotation or a two-fold screw
rotation, depending on whether the inversion centre is invariant
under the glide reflection. In either case, one can prove that, along
XS or UR, the two bands that are doubly degenerate owing to P ∗T
have the same eigenvalue of R2, denoted by γ2n(ka), where 2n is the
band index. Suppose there is a band crossing point at ka=k0 along
XS or US, then its Z2 topological invariant is given by

δ0=
∏

n=1,...,Nocc/2

γ2n(k0+0)
γ2n(k0−0)

(5)

if the inversion centre is invariant under the glide reflection, and by

δ0=
∏

n=1,...,Nocc/2

eik0
γ2n(k0+0)
γ2n(k0−0)

(6)

if the inversion centre is variant under the glide reflection, where
Nocc is the number of bands below the gap and k0±0 is a number
that is close to and larger (smaller) than k0.

In the absence of additional symmetry other than Θ , the Dirac
point is not protected andmay split into twoWeyl points of opposite
charge, centred at either XS or UR and related to each other by Θ ,
termed a ‘Weyl dipole’. In this case, we consider a sphere enclosing
the Weyl dipole. The Chern number of the sphere is zero owing
to the cancellation of monopole charge, but the new Z2 topological
charge is nontrivial. In this case, on the surface, Fermi arcs connect
Weyl points only from different Weyl dipoles, and the two Weyl
points within one Weyl dipole are not connected by a Fermi arc.

Perovskite iridate SrIrO3 was shown to be a topological
semimetal with a degenerate nodal line protected by a two-fold
screw axis29,31. It was found in ref. 29 that under a staggering
chemical potential propagating along the [001]-direction, the nodal
line is gapped at all but two points. On the basis of this finding,
we propose to realize the non-symmorphic Dirac semimetal in
a [(SrIrO3)2m(CaIrO3)2n] superlattice heterostructure shown in
Fig. 2b. For m=n=1, we perform a first-principles calculation for
the bulk band structure, and find a pair of Dirac points along XS that
are close to and symmetric about X, as shown in Fig. 2c. We modify
the tight-binding model given in ref. 29 such that its band structure
quantitativelymatches that from the first-principles calculation near
X (Fig. 2d). (Further details of the tight-binding model are given in
the Methods.)

On the surface, the double-helicoid requires at least one glide
reflection, restricting the surface space group to the following
four out of seventeen wallpaper groups: p1g1, p2mg , p2gg and
p4gm. We choose the (001)-surface with space group p1g1. Using
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Figure 3 | Surface state dispersion on the (001)-surface of the iridates
superlattice. a, Spectral weight of the top surface of a (001)-slab, along the
path 0̄-X̄-M̄, calculated from the tight-binding model used in fitting.
b, Spectral weight of the (001)-surface at, from top to bottom,
E0,1,2 respectively.

the fitted tight-binding model, we calculated the spectral weight
of the states near the top surface of a (001)-slab, along high-
symmetry lines in the surface Brillouin zone (Fig. 3a), and the 2D
surface Brillouin zone near X̄ at three different energies (Fig. 3b),
where the double Fermi arcs can be seen. We note that as the
energy decreases from E0, the energy of the bulk Dirac point, bulk
pockets emerge near the projection of the Dirac point and, more
importantly, the configuration of the two arcs rotates around the
projections of the Dirac points, such that, in Fig. 3b, the two arcs
cross each other along X̄M̄, where the crossing point is protected
byΘ .

Quad-helicoid surface state
Finally, we point out that new types of topological semimetal may
exist if additional non-symmorphic symmetries on the surface are
present, with their own characteristic surface dispersions. As an
example, we assume there be an additional glide plane, G′, that
is perpendicular to G, which strongly restricts the surface space
group to the following two: pmgg and p4gm. Following similar
steps, we find that Θ ′≡G′ ∗T guarantees double degeneracy along
ȲM̄, so that if both Θ and Θ ′ are present, all bands are doubly
degenerate along X̄M̄ and ȲM̄. This double degeneracy protects
a unique nontrivial surface dispersion consisting of four helicoids
near M̄, as shown in Fig. 4, or can be considered as the superposition
of the surface dispersions from four Weyl points, of which two are
positive and two are negative. This dispersion has a new type of Z2
spectral flow between two perpendicular lines of X̄M̄ and ȲM̄: two
bands from a degenerate pair at X̄M̄ flow to different degenerate
pairs at ȲM̄. A generic iso-energy contour of this quad-helicoid
surface dispersion consists of four Fermi arcs emanating from M̄.
Because there is only one M̄ inside the surface Brillouin zone, we
argue that no topological charge can be defined for the bulk band
crossings which project to M̄, or the Nielson–Ninomiya theorem
would be violated. Suppose one uses a 2-manifold, ∂A, to enclose
the band crossing point(s) that project to M̄, dividing the Brillouin
zone into two parts, A and Ā. If the band crossing points in A
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Figure 4 | Quad-helicoid surface state dispersion. The surface state
consists of two helicoids (blue and red) and two anti-helicoids (green and
orange). The blue and the green (also the orange and the red) helicoids
cross each other along M̄X̄, and the blue and the orange (also the red and
the green) helicoids along M̄Ȳ.

have a topological charge, then on its boundary ∂A a topological
invariant can be defined. However, because the Brillouin zone is
compact, ∂A is also the boundary of Ā, which has presumably
no band crossing inside, contradicting the nontrivial invariant
on its boundary. We conjecture that the system belongs to the
filling-enforced semimetals discussed in refs 57,63, where the band
crossings are guaranteed by the space group at certain integer
fillings. In this case, the surface dispersion can also be mapped to
a non-compact Riemann surface. Because the dispersion can be
considered as the superposition of four spiral surfaces, we consider
a holomorphic function with four branches. Θ and Θ ′ require
that two branches meet along X̄M̄ (defined as the real axis) and
ȲM̄ (defined as the imaginary axis), respectively. The generating
function we choose is

E(q‖)∼ Im[log(
√

q2+q−2+2+
√

q2+q−2−2)] (7)

where q=(ka−π)+ i(kb−π).

Conclusions
In this paper we theoretically find two new classes of topological
semimetals that have multiple Fermi arcs on the surface protected
by non-symmorphic glide reflections symmetries and time reversal.
We observe that, so far, all topological semimetals with protected
Fermi arcs have surface dispersions that are topologically equivalent
to helicoid structures that are the non-compact Riemann surfaces
representing certain holomorphic functions. Here we remark that
although the Riemann surface captures the topology of the surface
dispersion near the bulk node projections, it is yet to be shown
that, for the surface dispersion defined in the whole surface
Brillouin zone, there still exists a corresponding Riemann surface
representing an elliptic function. For material realization, we
propose superlattice heterostructure [(SrIrO3)2m(CaIrO3)2n] as a
non-symmorphic Dirac semimetal with two protected Fermi arcs
on the (001)-plane.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Z2 invariant protected by G∗T. The bulk invariant is defined on a sphere in the
Brillouin zone that encloses some band crossings (either nodal points or nodal
lines), and on the surface of that sphere, the conduction and the valence bands have
a finite direct gap and hence can be separated. For our case, owing toΘ , the generic
band crossing is a pair of opposite Weyl points symmetric about either XS or UR.
We use a sphere centred at k0, a point on XS, with radius kr . Each point on the
sphere is parameterized by (θ ,φ):

(ka,kb,kc)=(k0a+kr cosθ ,k0b+kr sinθ cosφ,k0c+kr sinθ sinφ) (8)

The derivation of the Z2 invariant on a sphere invariant underΘ=G∗T closely
follows the derivation of the Z2 invariant of 2D topological insulators. (See ref. 67.)

First we parameterize the sphere such that, underΘ , a point at (θ ,φ) is mapped
to (θ ,φ+π). Because the total Chern number on the sphere vanishes, we can hence
in principle choose a smooth gauge for all occupied bands, denoted by
|un∈occ(θ ,φ)〉. We can then define the following sewing matrix

Wmn(θ ,φ)=〈um(θ ,φ+π)|Θ|un(θ ,φ)〉 (9)

At θ=0,π, we have

Wmn(0/π) = 〈um(0/π)|Θ|un(0/π)〉

= (〈Θum(0/π)|Θ2
|un(0/π)〉)2

= −〈un(0/π)|Θ|um(0/π)〉

= −Wnm(0/π) (10)

that is,

W=−W T (0/π) (11)

Therefore, we can define the following Z2 quantity

δ0=
Pf[W (0)]
√
det[W (0)]

Pf[W (π)]
√
det[W (π)]

(12)

where Pf stands for the Pfaffian of an antisymmetric matrix. Equation (12) defines
a Z2 quantity which is either+1 or−1, because Pf2=det in general.

To prove that the Z2 quantity is also gauge invariant, consider changing the
gauge by a smooth unitary Nocc-by-Nocc matrix U (θ ,φ)

|u′m(θ ,φ)〉=
∑

n

Umn(θ ,φ)|un(θ ,φ)〉 (13)

It is straightforward to see that, after the transform, the sewing matrix becomes

W ′(θ ,φ)=U T (θ ,φ+π)W (θ ,φ)U (θ ,φ) (14)

so that at θ=0,π

Pf[W ′(0/π)]=det[U (0/π)]Pf[W (0/π)] (15)

det[W ′(0/π)] = det[U T (0/π)]det[W (0/π)]det[U (0/π)]

= det[W (0/π)]det2[U (0/π)]

Substituting equations (15) into equation (12), we find

δ′0=δ0 (16)

Simplification of the Z2 invariant. In this section, we show how the Z2 invariant
given in terms of Pfaffians in equation (12) simplifies in the presence of inversion
symmetry in a spinful system. We will closely follow the derivation of the original
Fu–Kane formula in topological insulators with inversion symmetry, which can be
briefly summarized as follows: the bands at time-reversal invariant momenta are
also eigenstates of the inversion; each state and its time-reversal partner have the
same inversion eigenvalue, so that each Kramers’ pair at a time-reversal invariant
momentum maps to an eigenvalue of either+1 or−1; the product of the inversion
eigenvalues of all occupied Kramers’ pairs at all time-reversal invariant momenta is
the same as the Pfaffian invariant.

In our case, the time-reversal symmetry is replaced byΘ=G∗T , and the
points that are invariant underΘ are θ=0,π on the sphere. The inversion
symmetry itself is not a good quantum number at these points, but the composition
symmetry R2≡P ∗G is. We will now prove that each degenerate pair of states at
θ=0,π has the same eigenvalue of R2.

We distinguish two cases: the inversion centre within the glide plane and the
inversion centre not within the glide plane. A generic inversion operation takes
the form

P : (x ,y ,z)→
(
λ

2
−x ,

µ

2
−y ,

ν

2
−z
)

(17)

where λ,µ,ν=0,1. If λ=0, then the inversion centre (0,µ,ν)/2 is on the glide
plane; if λ=1, then the inversion centre (1/2,µ/2,ν/2) is away from the
glide plane.

If the inversion centre is inside the glide plane, then we have

R2 : (x ,y ,z)→
(
x ,
µ

2
−y−

1
2
,
ν

2
−z
)

(18)

and

R2
2 : (x ,y ,z)→(x ,y ,z) (19)

However, because in spin space R2 is equivalent to a full spin rotation, we have

R2
=−1 (20)

Also, the commutation relation between R2 andΘ can be shown to be

R2Θ=T010ΘR2=e−ikbΘR2 (21)

From equation (20), each state at θ=0,π is also an eigenstate of R2 with eigenvalue
of either+i or−i. Using equation (21), we see that for each eigenstate of R2 with
eigenvalue+i

R2Θ|+ i〉=e−ikbΘR2|+ i〉=−e−ikb iΘ|+ i〉 (22)

that is,Θ|+ i〉 is an eigenstate of R2 with eigenvalue−e−ikb i=+i at θ=0,π. Hence
the two states in one degenerate pair at θ=0,π have the same eigenvalue of R2,
because kb=π. Following ref. 67, we see that the Z2 invariant can be expressed in
terms of these eigenvalues

δ0=
∏

n=1,...,Nocc/2

γ2n(0)
γ2n(π)

(23)

If the inversion centre is away from the glide plane, we have

R2 : (x ,y ,z)→
(
x+

1
2
,
µ

2
−y−

1
2
,
ν

2
−z
)

(24)

which is in fact a two-fold screw axis. The square of R2 is

R2
2 : (x ,y ,z)→(x+1,y ,z) (25)

Again, considering the spin rotation in R2, we find that the eigenvalues are±ie−ika/2
from equation (25). The commutation relation between R2 andΘ is

R2Θ=T110ΘR2=e−ika−ikbΘR2 (26)

so that, for an eigenstate of R2 with eigenvalue+ie−ika/2, we have

R2Θ|+ ie−ika/2〉=−ie−ika/2−ikb |+ ie−ika/2〉 (27)

Equation (27) shows that at θ=0,π (where kb=π), the two degenerate states have
the same eigenvalue of R2. Following ref. 67, we secure the following expression for
the Pfaffian invariant

δ0=
∏

n=1,...,Nocc/2

eik0
γ2n(0)
γ2n(π)

(28)

Splitting of the non-symmorphic Dirac point in the absence of inversion. In this
section, we lift the symmetry of inversion, keeping glide reflection and time
reversal. Without the inversion, the bands are in general nondegenerate, and a
single Dirac point splits into two Weyl points. Because glide reflection inverts the
monopole charge of a Weyl point and time reversal preserves it, the configuration
of the split Dirac point is such thatW1 is related toW2 byΘ=G∗T , whereasW ′

1,2
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are related toW1,2 by time reversal, in the presence of an inversion-breaking
perturbation. Yet it is important to note that, even in this case, the system is not a
generic Weyl semimetal, because each pair of Weyl points related by G∗T ,W1 and
W2, for example, carries a Z2 topological charge. Consider a sphere enclosing such
a pair, and the definition of the Z2 invariant depends only on the presence of G∗T .
Therefore, if this invariant is nontrivial in the presence of inversion due to the
Dirac point, it remains nontrivial after the splitting. This Z2 topological charge has
two consequences: on the surface preserving G, the Fermi arcs must not connect
the projections of Weyl points that are related by G∗T ; and there must be an even
number of such pairs of Weyl points as a consequence of the Nielson–
Ninomiya theorem.

Some details of the numerics. The band structures of (SrIrO3)2m(CaIrO3)2n are
calculated in the framework of density functional theory (DFT) including the
Hubbard U , as implemented in the Vienna ab initio simulation package (VASP)68
using the generalized gradient approximation (GGA) of the exchange-correlation
function in the Perdew–Burke–Ernzerhof (PBE) form69. The projector augmented
wave method70 was applied to model the core electrons. Monkhorst–Pack k-point
sampling of 4×4×2 was used for (m=1,n=1). Energy cutoff of the plane wave
basis was fully tested, and atomic structures were optimized with maximal residual
forces smaller than 0.01 eVÅ−1. Spin–orbit coupling (SOC) was included in all
calculations. For the Hubbard U <2, all the results are similar, so here we show
only the results for U =0 for the sake of simplicity.

For SrIrO3 (that is,m=1,n=0), we obtain results similar to those in a previous
study29, with the Dirac nodal line around the Fermi energy. For (SrIrO3)2(CaIrO3)2,
the Dirac nodal line folds around X point owing to an enlarged unit cell. One then
expects the line to be gapped at most points as a result of the broken two-fold screw
rotation, leaving a pair of Dirac points along XS protected by G. These properties
have been confirmed by the first-principles calculation.

To study the surface states of (SrIrO3)2(CaIrO3)2, we employ a tight-binding
model obtained by adding several mass terms to the model given in ref. 29:

H=


H0+H1 T+T1 0 e−ikz (T−T1)

†

(T+T1)
† (H0−H1)ε+m1 T−T1 0

0 (T−T1)
† H0+H1 T+T1

eikz (T−T1) 0 (T+T1)
† H0−H1


where H0=2tp(coskx+cosky)τx ,
H1=(t1pcosky+ t2pcoskx)syτy−(t1pcoskx+ t2pcosky)sxτy ,
T= tp− itd(sinkx sy+ sinky sx)τy , T1=m2(sinkx sx+ sinky sy)τx . By fitting with the
DFT results, we can get the corresponding parameters, tp=−0.0785, td=
0.053, t1p=−0.1331, t2p=0.1597,m1=0.0112,m2=0.0006,ε=0.3078 in units of eV.
The surface band structures are calculated in a semi-infinite geometry by means of
the recursive Green’s function method71.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author on request.
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