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Symmetry-protected topological photonic crystal
in three dimensions
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Topology of electron wavefunctions was first introduced to
characterize the quantum Hall states in two dimensions
discovered in 1980 (ref. 1). Over the past decade, it has
been recognized that symmetry plays a crucial role in the
classification of topological phases, leading to the broad notion
of symmetry-protected topological phases2. As a primary
example, topological insulators3,4 are distinguished from
normal insulators in the presence of time-reversal symmetry
(T ). A three-dimensional (3D) topological insulator3–6 exhibits
an oddnumber of protected surfaceDirac cones, a uniqueprop-
erty that cannot be realized in any 2D systems. Importantly,
the existence of topological insulators requires Kramers’
degeneracy in spin–orbit coupled electronic materials; this
forbids any direct analogue in boson systems7. In this report,
we discover a 3D topological photonic crystal phase hosting
a single surface Dirac cone, which is protected by a crystal
symmetry8–10—the nonsymmorphic glide reflection11–13 rather
than T . Such a gapless surface state is fully robust against
random disorder of any type14,15. This bosonic topological band
structure is achieved by applying alternating magnetization
to gap out the 3D ‘generalized Dirac points’ discovered in
the bulk of our crystal. The Z2 bulk invariant is characterized
through the evolution of Wannier centres16. Our proposal—
readily realizable using ferrimagnetic materials at microwave
frequencies17,18—expands thescopeof3Dtopologicalmaterials
from fermions to bosons.

Unlike in Fermi systems, achieving a single Dirac cone in boson
systems requires T breaking. This is because the T operator acts
di�erently on bosons and fermions: T 2

f =�1 for fermions with half-
integer spins and T 2

b =1 for bosons with integer spins. As a result,
Tb is not compatible with the Hamiltonian of a single Dirac cone,
whereas Tf is (see Supplementary Information). Instead of Tf, the
Dirac point degeneracy in our photonic crystal is protected by a
glide reflection, which ensures an odd number of band crossings
on two high-symmetry lines in the surface Brillouin zone (BZ;
refs 12,13). This 3D topological photonic crystal is a material
realization of the recently proposed nonsymmorphic topological
phase11–13,19 and can be regarded as a bosonic analogue of both the
3D topological insulator3–5 (in terms of the single surface Dirac
cone) and the topological crystalline insulators8–10 (in terms of the
crystal-symmetry protection) in electronic systems.

Our starting point is a photonic crystal having a body-centred-
cubic (bcc) unit cell which contains four identical dielectric rods,
illustrated with di�erent colours for clarity in Fig. 1b. This crystal
belongs to the nonsymmorphic space group No. 230 (Ia3̄d) that
contains glide reflections and inversion. Interestingly, such a triply

periodic structure self-assembles as disclination-line networks in
the first blue phase of liquid crystals20, denoted as BP I. Here,
the dielectric constant (") of the rods is 11 and the radius is
0.13a, where a is the length of the cubic cell. In Fig. 1a, the
photonic band structure of BP I shows a four-fold degenerate point
at the P momentum, dispersing linearly in all directions of the 3D
momentum space. Unlike a regular 3D Dirac point21,22—a four-fold
degeneracy point which splits into two sets of doublet bands along
any direction—our four-fold degeneracy here splits into four bands
along a generic direction. In Fig. 1a, this splitting is not obvious,
becausemost dispersions still remain doubly degenerate along high-
symmetry momentum lines. However, it is clear that the third and
fourth bands split along P–0 and the first and second bands split
along P–H . We name this type of degeneracy23 a 3D ‘generalized
Dirac point’ (GDP). We note that there are two non-equivalent P
points in the 3D bcc BZ related by inversion. Interestingly, the two
GDPs (at±P) are the only band touchings between band 1,2 and 3,4.
When the space group is perturbed, the GDPs could turn into line
nodes, Weyl points24,25 or open bandgaps. Detailed studies of GDPs
will be presented in another paper.

In symmorphic space groups, where the point groups
decouple from lattice translations, the highest dimension of
group representation is three. The four-fold band degeneracies
of the GDPs are hence the consequence of the nonsymmorphic
symmetries of glide reflections and screw rotations in BP I. A
nonsymmorphic symmetry is in general composed of a point
group (mirror or rotation) followed by a fractional lattice
translation, where neither of the two is a symmetry of the system.
The important feature of a nonsymmorphic space group is the
extra band degeneracies at the BZ boundaries26–31. Because the
screw rotations cannot be preserved on a planar surface, we
focus on the glide reflections to obtain protected surface states.
Shown in Fig. 1b, the (001) surface has two glide reflections:
Gx = {Mx |(a/2)x̂ � (a/2)ŷ} and Gy = {My |(a/2)x̂}. The inversion
centre is at the origin of the unit cell inside the glide plane of Gy .
The top-view schematic illustrates the relations between the four
rods under the two glide reflections. The (001) surface BZ is plotted
in Fig. 1c.

A glide reflection ensures a linear point degeneracy along each
glide-reflection-invariant momentum line. To see this, we study the
Bloch states on the Gy-invariant lines of X0–X and M0–M shown
dashed in the (001) surface BZ in the right-hand panel of Fig. 2a.
A Bloch state with momentum (kx , ky) is mapped to another state
withmomentum (kx ,�ky) underGy , so for any state along these two
lines with ky =0 and ky =⇡/a, its momentum is invariant under Gy .
This means the eigenvalues of Gy (gy) are good quantum numbers
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Figure 1 | BP I photonic crystal. a, Bulk band structure of the BP I photonic crystal in the bcc lattice. The GDP is between the first four bands. b, Cubic unit
cell of length a consisting of four identical dielectric rods oriented along the bcc lattice vectors of (111) (red), (111̄) (yellow), (11̄1) (blue) and (1̄11) (green).
The rods go through (0, 0, 0)a, (0, 0.5, 0)a, (0.5, 0, 0)a and (0, 0, 0.5)a, respectively. There are two glide reflection planes (Gx and Gy) in the structure,
invariant on the (001) surface. The top-view schematic illustrates the relations between the rods under operations of Gx and Gy . c, The bcc BZ and its
projection onto the (001) surface BZ. The transparent red box outlines the volume in the bulk BZ that projects to half of the surface BZ. d, Bulk band
structure showing that the GDP opens when magnetization is applied on the rods without breaking Gy .

for the Bloch states on these two lines. Because Gy
2 = {1|ax̂},

gy(kx) = ±e�ikx a/2 [g 2
y (kx) = e�ikx a], which is dependent on kx . The

two branches of glide-reflection eigenvalues always di�er by aminus
sign, and evolve into each other after a 2⇡ transportation along the
Gy-invariant lines owing to the fact that gy(kx)=�gy(kx + (2⇡/a)).
As a result, the corresponding wavefunctions of the two branches
have the same winding as their eigenvalues—a unique property of
the half-lattice translation in glide reflections. Consequently, the two
frequency eigenvalues of the two Bloch modes also switch values
after transporting a period along the invariant momentum lines,
illustrated in Fig. 2a. Assume the frequencies of the two modes are
!+ and !� at an arbitrary kx point (say kxa= 0). The frequency
dispersions switch their values at ka= 2⇡. This switch ensures a
crossing point (red dot) on X0–X and M0–M, respectively. We argue
that these two protected double degeneracies give a Z2 classification
of the surface states12. Illustrated in the middle panel of Fig. 2a,
there are two topologically inequivalent ways for these two point
degeneracies to connect. The gapless connection is a signature of
the topologically nontrivial surface state protected by Gy .

We now break T in the BP I photonic crystal to open the
bulk bandgap without breaking Gy . Shown in Fig. 1d, the GDP
at the P point lifts up into a bandgap when we apply alternating
magnetizations on the rods along ẑ . These magnetizations
induce o�-diagonal imaginary parts in the dielectric constant
(") of materials with a gyroelectric response32. (Ferrimagnetic
materials with a gyromagnetic response17 give the same results in
Supplementary Information.) Here µ=1 and

"=
0

@
"k  0
� "k 0
0 0 "zz

1

A

where "zz = 11, "2
k � ||2 = "2

zz (ref. 24) and  is a non-zero
imaginary number when the magnetization (Mz ) is present. In
Fig. 1d,  = �10i, �5i, +5i, +10i for the red, yellow, green and
blue rods, respectively. This configuration preserves Gy , because
magnetization (magnetic field) flips sign under amirror (reflection)
operation. The 2D plane group of the resulting (001) surface is pg .

The (001) surface state, plotted in Fig. 2b, has a single Dirac cone
at the L point on the M0–M line, consistent with the glide-reflection
degeneracy in Fig. 2a. By varying the magnetization or rod radius
without breakingGy , theDirac point Lmoves along theGy-invariant

line M0–M. This single Dirac cone at L is connected gaplessly with
the bulk bands across the bandgap. In Fig. 2c, we restore Gx to
coexist with Gy by doubling the magnetization amplitude of the
green and yellow rods (|| from 5 to 10). The surface plane group
becomes p2gg . Owing to this extra glide-reflection plane through
the Y point, the surface Dirac cone is then pinned at Y on M0–M.
If we break both glide symmetries by de-magnetizing the yellow
rod, both glide planes of Gx and Gy are broken and the surface
plane group reduces to p1. The surface Dirac cone is now gapped, as
shown in Fig. 2d. This demonstrates that the gapless surface states
are indeed protected by the glide reflection.

The principle of bulk-edge correspondence says that the surface
state is a holographic representation of the bulk topology. We
demonstrate this correspondence between the surface states in Fig. 2
and the ‘hybrid Wannier centres’16 of the bulk bands below the
bandgap computed in Fig. 3. This approach is also known as the
Wilson loops33,34. The hybrid Wannier function of each band is
a spatially localized wavefunction along z , obtained from Fourier
transforming the Bloch wavefunctions with respect to kz while
keeping the other two surfacemomenta. The z-position expectation
values of the hybrid Wannier wavefunctions—that is, the hybrid
Wannier centres, are equivalent to the Berry phases of the bulk
bands below the gap along a loop in ẑ in the bulk BZ. In our
bcc lattice, this non-contractable loop of length 4⇡/a (instead of
2⇡/a) is the vector connecting H and �H in Fig. 1c. So the
hybrid Wannier centre is well defined up to a lattice period of a/2
(instead of a) in ẑ and, similarly, the Berry phase has a 2⇡ phase
ambiguity. The calculations of the Berry phases are detailed in the
Supplementary Information.

In the surface BZ, a gapless spectrum of Wannier centres (Berry
phases) indicates a nontrivial bulk topology and a gapless surface
state. In contrast, a gapped spectrum represents a trivial bulk
topology and the absence of gapless surface states. This can be
understood by the following intuitive arguments. If there is a full
gap in the spectrum of Wannier centres, then there is a certain
position in z where no state is localized. Terminating the bulk at that
plane results in a surface without surface states—the trivial surface
states. On the other hand, if the Wannier centre plot is gapless,
then for any surface termination there must be a localized surface
state at some surface momentum. The surface is hence gapless for
terminations at arbitrary z—a nontrivial surface. In Fig. 3, we plot
theWannier centres of the two lowest bands along the closed loop of
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Figure 2 | The (001) surface states after breaking T . The surface and bulk dispersions are plotted in red and blue, respectively, along the surface
momentum lines that go through the surface Dirac point twice to show its anisotropy. More surface data are plotted in Supplementary Fig. 1. a, Illustration
of the two crossing points (double degeneracies) on the Gy-invariant lines of M0–M and X0–X (dotted) in the surface BZ. Consequently, the surface states
can have a gapless connectivity which is topologically nontrivial. M0 and M are the same point in the BZ, so are X0 and X. b, Single Dirac cone at L, movable
along the M0–M line protected by Gy . c, Single Dirac cone in b, pinned at the Y point owing to the coexistence of Gx and Gy . d, Surface states in b,c gapped
by breaking the glide-reflection symmetries. For all above surface calculations, a perfect metallic boundary is placed on top, at the centre of the cubic cell,
on the (001) surface with an air gap spacing of 0.5a from the photonic crystal surface. The 3D plots of the surface dispersions are plotted on the right to
show the behaviour of the surface Dirac cone. The 3D surface plots are centred at the Y point, with a span of 0.2⇡/a in kx and 0.1⇡/a in ky and a normalized
frequency range between 0.41 and 0.43.
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Figure 3 | HybridWannier centres in the surface BZ indicating bulk topologies and the connections of the surface states. a, Gapless hybrid Wannier
centres corresponding to the nontrivial surface states (pg) in Fig. 2b. b, Gapped hybrid Wannier centres corresponding to the trivial surface states (p1) in
Fig. 2d. The hybrid Wannier centres corresponding to the p2gg surface in Fig. 2c are plotted in the Supplementary Information.

X0–X–M–M0–X0 in the surface BZ. Figure 3a depicts the hybrid
Wannier centres calculated for the bulk bands in Fig. 1d, whose
surface state is shown in Fig. 2b. Similarly, the hybrid Wannier
centres in Fig. 3b correspond to the surface states shown in Fig. 2d.
The Wannier centres are gapless in Fig. 3a, consistent with the
existence of the gapless single surface Dirac cone in Fig. 2b.
In comparison, the Wannier centres in Fig. 3b are gapped, also
consistent with the absence of topological surface states in Fig. 2d.
These data confirm the bulk-edge correspondence that theWannier
centres for all bulk bands below the bandgap are homotopic to
the surface band structure of a semi-infinite system with one
open surface.

Single-Dirac-cone surface states are fully robust and do not
localize under arbitrary random disorders on the surface. This
has been discussed in 3D topological insulators, where the surface
states remain delocalized under random impurities of any type14,15,
assuming that spontaneous symmetry breaking does not occur. In
our case, although individual defects break the glide reflection,
their ensemble average does not. Intuitively, if one local disorder
generates a positive Dirac mass term within a region on the

surface, there must be a neighbouring region where the mass term
is negative. A chiral edge mode exists along the edge between
two regions with opposite masses, similar to the photonic one-
way edge states17,32, analogous to the quantum Hall e�ect. In the
presence of strong disorder, these chiral edge modes percolate
the surface and the surface states remain delocalized. The surface
with a strong random disorder can be mapped to the electronic
states at the critical point of a quantum Hall plateau transition,
where chiral edge modes between regions of di�erent Landau-
level filling factors percolate. The transmission rate of light on the
surface hence exhibits the universal scaling laws in the universality
class of the quantum Hall plateau transitions12,35. Free from any
interaction, this single-Dirac-cone surface state is an ideal platform
for studying the critical phenomena of ‘metal–insulator’ transitions
in Dirac systems14,36.

In 2D photonic crystals, topological band structures protected
by "–µ symmetry37,38 have been studied. However, symmetries in
constitutive relations are di�cult to maintain over a wide frequency
bandwidth. Another 2D example discusses the bulk topology of C6
rotation39. Unfortunately, six-fold rotation cannot be preserved on
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the 1D edge and cannot protect edge states. In contrast, our glide
reflection can be maintained for all materials at all frequencies with
protected surface states.

Experimentally, the T -breaking BP I photonic crystals can
be readily realized at microwave frequencies by assembling
ferrimagnetic rods17,18 with internal remnant magnetization,
without the need for external magnetic fields. Towards optical
frequencies, T -breaking could potentially be implemented through
dynamic Floquet modulations40,41. In addition, our approach for
photons can be used directly for phonons, where T -breaking can
be achieved by spinning the rods42.

Thiswork demonstrates that symmetry-protected 3D topological
bandgaps supporting disorder-immune surface states can
be obtained in bosonic systems. Spatial symmetries2,8,12,43–45
(C. Fang et al., manuscript in preparation) other than the glide
reflection are to be studied in the rich context of 230 space groups
and 1651 magnetic groups for any bosonic particles.

Received 22 July 2015; accepted 19 November 2015;
published online 4 January 2016
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I. COMPATIBILITY BETWEEN TIME-REVERSAL SYMMETRIES AND THE SINGLE-DIRAC-CONE SURFACE STATE

The key ingredient in achieving bosonic single Dirac surface states is the breaking of T , which we prove by contradiction. The
T operator differs fundamentally for particles with different spins : T 2

f =−1 for fermions with half-integer spins while T 2
b = 1

for bosons with integer spins. Up to a choice of basis, the anti-unitary T operator can always be expressed as T f = σyK|k→−k
and Tb = K|k→−k for fermions and bosons, respectively. Here σx,y,z are the Pauli matrices acting on the two-component wave-
functions of a single Dirac cone. T flips the sign of momentum (k) and K is the complex conjugation. Let us consider the
surface (say the xy plane) of a 3D system with a bulk gap. In the presence of T , a single Dirac cone can only appear at a
T -invariant momentum, in the vicinity of which the two-band Dirac Hamiltonian is denoted by HSD(k) = kxσ1 + kyσ2. Here
kx,y are the two surface momenta and σ1,2 are two linearly independent Pauli matrices. T -invariance implies T and HSD(k)
commute, requiring the existence of at least two Pauli matrices that anti-commute with T . For fermions, this is satisfied since
all three Pauli matrices anti-commute with T f . The anti-commutation relations forbid any mass term (σ3) in HSD(k), justifying
the T -protected single Dirac surface states found in topological insulators. For bosons, however, σy is the only Pauli matrix
anti-commuting with Tb. So Tb is not compatible with HSD. Hence T has to be broken to linearly split the two bands in all
surface directions away from the Dirac point, in order to form a single surface Dirac cone in photonic crystals.
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II. SINGLE-DIRAC-CONE SURFACE STATES (MORE DATA)

In Fig. S1, we plot the (001) surface states of a different surface termination and along a different momentum loop from what
are plotted in Fig. 2.

A     (001) surface BZ

XX’

MM’

G
y

Y

ω
 (

a
/λ

0)

Γ Y X’ Γ X M Y X’

0.4

0.5

B    “Un-pinned” Dirac cone (pg)

M’

M
z
: G

y

ω
 (

a
/λ

0)

Γ Y X’ Γ X M Y M’ X’

0.4

0.5

C    “Pinned” Dirac cone (p2gg)

G
x

M
z
: G

y

Γ

Γ Y X’ Γ X M Y X’

0.4

0.5

M’

ω
 (

a
/λ

0)

D      Gapped surface state (p1) M
z
: 

FIG. S1: The (001) surface states after breaking T . A) (001) surface Brillouin zone. B) Single Dirac cones un-pinned along X −X ′ and M−M′

lines protected by one glide reflection (Gy). C) Single Dirac cones pinned at X and Y points by the extra glide (Gx). D) Single Dirac cones are
gapped due to the loss of glide reflections3. A perfect metallic boundary is placed from top, at the center of the cubic cell, on the (001) surface
with an air gap spacing of 0.4a from the photonic crystal surface.

3

III. FERRIMAGNETIC MATERIALS

Here we break T with the gyromagnetic material instead of the gyroelectric material in the main text. For example, yttrium
iron garnet (YIG) has strong gyromagnetic responses at microwave frequencies. The permittivity and permeability of the YIG

crystal can be ε = 11, µ =

⎛

⎝
µ// ν 0
−ν µ// 0
0 0 µ0

⎞

⎠, where ν is a non-zero imaginary number when the magnetization (Mz) is present

and µ0 = 1. In Fig. S2, µ// = 1.5 and ν = −1.2i,−1.2i,+1.2i,+1.2i for the red, yellow, blue and green rods respectively. The
bulk bandgap opens and the surface state has the same nontrivial connectivity as that is shown in Fig. 2C. These calculations
were performed using a modified version of the MIT Photonic Bands [1].
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FIG. S2: Bulk and surface band structures of ferrimagnetic (gyromagnetic) photonic crystals. A) Bulk band structure showing the gap opening
of the GDP. B) Gapless Z2 surface states of single Dirac cones at X≡X ′ and Y≡Y ′. A perfect metallic boundary is placed from top, at the
center of the cubic cell, on the (001) surface with an air gap spacing of 0.4a from the photonic crystal surface.
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IV. DISCUSSIONS OF HYBRID WANNIER-CENTER SPECTRA

Using the notation in Ref. [2], the hybrid Wannier centers z̄n(k⊥) and the equivalent Berry phases φn(k⊥) is related by
z̄n(k⊥) = c

2π φn(k⊥). Here n labels the band, k⊥ means the wavevector in the surface BZ perpendicular to kz. c is the real-space
period in the direction of the surface, which is a/2 in our bcc lattice for (001) surface.

Hybrid Wannier centers [z̄n(k⊥)] are properties of the bulk. In addition to the symmetries on the surface, z̄n(k⊥) also have
z to −z symmetries in the bulk. In our system, this z-symmetry is inversion. so z̄n(k⊥) = −z̄n(−k⊥) in all the plots in Fig. 3
and S3. At inversion-invariant momenta (X ,M,Γ̄, Y ) where k =−k up to a reciprocal vector, ∑

n
z̄n(k⊥) = 0 or π . If the Wannier

centers have a single crossing in the closed loop of X ′ − Γ̄−X or M −Y −M′, the crossing point must locate at one of the
inversion-invariant points. The above arguments are all consistent with the three plots of Fig. 3A,B and Fig. S3.

Fig. S3 plots the hybrid Wannier centers in the surface BZ of surface symmetry p2gg. Due to the high symmetry, the two
Wannier centers are completely degenerate on the X ′ − Γ̄−X line at the phase value of π . The 2D vertical plane in the bulk
BZ containing X ′ − Γ̄−X is the only plane on which every k point is invariant under Gy. Consequently, the lowest two bulk
bands on this vertical plane can be separately labeled by the two Gy eigenvalues of g±y . On the other hand, the multiplication
of Gx and inversion (P) also transforms the Bloch states, within this vertical plane, from (kx,0,kz) into (kx,0,−kz). In addition,
[GxP,Gy] = 0. This commutation relation means that these two operators share the same eigenstates on the plane, so that we can
transforming the states within each separate branch of the two bulk bands labeled by g±y . Since GxP transforms kz into −kz in
the plane. This z-symmetry requires z̄(k⊥) = −z̄(k⊥), i.e. Berry phases of 0 or π for both branches of the two bulk bands, for
k⊥ on the X ′ − Γ̄−X line.
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FIG. S3: The gapless hybrid Wannier centers corresponds to the non-trivial surface states (p2gg) in Fig. 2C.

V. CALCULATION OF BERRY PHASES (HYBRID WANNIER CENTERS)

The multi-band non-Abelian Berry phases are calculated through the linking matrices Mk,k+∆k
mn of the Bloch wavefunctions

umk between the neighbouring two k points. Mk,k+∆k
mn = ⟨umk|un(k+∆k)⟩. We multiply the linking matrices to be the Wilson loop

W (k⊥) = ∏Mk//,k//+∆k// along the closed loop in the BZ– a parallel transport cycle. The Wilson loop eigenvalues are λn(k⊥)
and the Berry phases are φn(k⊥) = Im[logλn(k⊥)].

The key of this calculation is fixing the periodic gauge at the two end points (k0 and klast) differ by a reciprocal vector G in
the bulk BZ. We set u(klast) = u(k0 +G) = e−iG·ru(k0). For other k points in the loop, gauge fixing is not required.
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