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Abstract

An efficient numerical algorithm is the key for accurate evaluation of density of states (DOS) in
band theory. The Gilat-Raubenheimer (GR) method proposed in 1966 is an efficient linear
extrapolation method which was limited in specific lattices. Here, using an affine transformation,
we provide a new generalization of the original GR method to any Bravais lattices and show that
it is superior to the tetrahedron method and the adaptive Gaussian broadening method. Finally,
we apply our generalized GR method to compute DOS of various gyroid photonic crystals of

topological degeneracies.
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1. Introduction

Numerical methods of density of states (DOS) calculations [1]
fall into two categories, extrapolation and interpolation. Each
category can use linear or high-order fittings. Linear extra-
polation methods include Gilat-Raubenheimer (GR) [2-6]
and adaptive (Gaussian) broadening [7]. The high-order
extrapolation methods were discussed in [8, 9]. Linear inter-
polation methods include the tetrahedron method [10-12],
which does not need group-velocity information and is flex-
ible in terms of volume grid division into tetrahedrons. The
high-order interpolation methods were discussed in [13-15].

The extrapolation methods are better than the interpolation
methods at band crossings [8, 16]. The interpolation methods
interpolate the frequency (or energy) data from the nearest-
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neighbor momenta for linear interpolations and requires more
neighboring data points for high-order interpolations. At the
band crossings, interpolation methods sample the points across
the degeneracy, resulting in the increase of errors. In contrast,
an extrapolation method extrapolates the neighboring frequency
data using both the frequency and the group velocity (first
derivative) at each momentum point for linear extrapolations
and requires higher-order derivatives for high-order extrapola-
tions. Consequently, the extrapolation methods are not vulner-
able to the band crossings while the interpolation methods are.

GR is the first linear extrapolation method proposed. It
was originally formulated in the three-dimensional (3D) cubic
grid and was extended to hcp [3], tetragonal [4] and trigonal
lattices [5], by dividing the irreducible Brillouin zones (IBZ)
into rectangular and triangular prisms. An improved GR
method [6] derives the analytical formulation of the DOS
contribution for parallelepiped subcells, applicable to all
Bravais lattices. In this work, using a geometric transforma-
tion between a cube and a parallelepiped, we made a simpler
generalization of the original GR method for all lattices. The
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convergence plots show that our generalized GR (GGR)
method is consistently more accurate than the commonly-
used tetrahedron and Gaussian methods. In appendix A, we
showed that this GGR method is equivalent to the improved
GR method derived in a different way. In appendix B, we
discussed the GGR method for 2D.

In photonics, the GR method has never been adopted.
The tetrahedron method [17] and histogramming [18-20]
were used instead. A new method named Dirichlet-to-Neu-
mann maps [21] has been implemented in 2D photonic
crystals for finding both the DOS and the equifrequency
surfaces. In this paper, we applied the GGR method to pho-
tonic crystals.

The rest of the paper is arranged in the following way.
Section 2 introduces the details of this transformation for our
GGR method. Section 3 compares the convergence of different
methods. In section 4, we applied our method to topological
photonic crystals. Section 5 discusses the computing efficiency
of the GGR method. Section 6 concludes our findings.

2. Generalizing GR method by affine transformation

The core idea of our GGR method is to use an affine trans-
formation [6] to transform a parallelepiped BZ into a cube, so
that the original GR method can be used for any lattice. The
BZ is a parallelepiped constituted by three reciprocal vectors
b; (i =1, 2, 3), starting from an arbitrary point k. The k
points are uniformly distributed along three basis vectors b.
The affine transformation changes the k-basis of the paralle-
lepiped BZ into t = (t;, f,, t3) of a cubic volume,

k — ko = Bt = bty + by, + bstz, (D)

where t, 1, 3 € [0, 1] and B = [by, b,, b3]. Consequently the
volume elements of the two sets of bases satisfies dV, =
det(B)dV; = QdV,, in which (2 is the volume of the BZ.

We convert the DOS [D(w)], the integral on equi-
frequency surface S,,, from the k basis into the cubic t basis

1 dSk ds,
Pw =<3 [ Sy [ = @)
02 s i T2 s Tl
since
1dSdke  1dVe  dV, _ dS,drg 3

Qwldk,  Qdw  dw  |wldr

where vy and v; are the group velocities in each basis and k|
and 7, are the vectors normal to S_,. n is the band index. v is
obtained by scaling vy:

Vi = iw(k(t)) = Vkw - i(Bt) = vy - B, “

where vy - B is a vector whose ith component is (v - b;).
So far we have transformed the integral in parallelepiped
BZ into integral in cubic volume ¢; € [0,1]. Then, we can use
original GR method to calculate the DOS in the basis of ¢,
The GR method partitions the cubic integral volume into
uniform small cubes, with the k points at their centers. In each

cubic subcell, we use linear extrapolation based on the fre-
quency and group velocity of the central point to approximate
the frequency of other region. In this case, the equifrequency
surface of a given frequency is a polygon in each cubic cell.
The area of the polygon is provided by the original GR
method [2]. The final GGR formula is given in equation (A.4)
in the appendix.

The integral region of our method is the whole BZ, a
parallelepiped spanned by by, b,, b3 or a fraction of it. This
works for the general case for all lattices and symmetries.
Although using IBZ is computationally more efficient, the
choice of IBZ is symmetry specific. For example, we broke
both the spatial and time-reversal symmetries in section 4, and
the corresponding IBZ varies from case to case. When sam-
pling the whole BZ, we recommend that the k mesh be shifted
away from the BZ center (I') to avoid the divergence problem
due to the zero group velocities [2].

3. Accuracy comparison between three methods

We compared the accuracy of GGR method with that of
adaptive Gaussian broadening method and tetrahedron method.
We assume that the lattice is body-centered cubic (bcc) and the
BZ is a parallelepiped formed by three reciprocal lattice vectors
b; i=1, 2, 3 and |b;| = 1) starting from origin. The total
number of K points is N = N{N,N;, where N; is the number of k
points along the b; direction, and for simplicity, we set N; =
N, = N;. The band frequency is w = |k|, |k]>, |k?, |k|*
respectively, so that we have analytical DOS to compare with.
The error percentage is defined as:

Jo 1Dy (@) = D) ldw
S Dre(w)dw

where Dy (w) is the DOS calculated on N k points and D, (w)
is the theoretical DOS.

In figure 1, error(N) of the three methods are presented in
double logarithmic plots. The GGR method is better in the
four cases. It is important to point out that, in the realistic
band structures with band crossings, the tetrahedron inter-
polation method will have an even lower accuracy [8, 16].
Therefore, the GGR extrapolation method is a clear winner.

We fit the errors linearly [In(error(V)) = pIn(N) + p,]
for large number of k points, where p; and p, are the real
fitting parameters. The power dependences of p; were tabu-
lated in table 1 for all three methods. The p; values of GR
method are consistent with the accuracy analysis in [22],
which showed error(N) o N2/ The p1 values of the tetra-
hedron method are also close to the rate of convergence
in [23].

We wrote the GGR method according to [2], the adaptive
Gaussian broadening method following [7], and the tetra-
hedron method following [10, 12]. In our program of the
adaptive Gaussian broadening method, width of Gaussian
function is a|vg|Ak, where Ak is the side length of a subcell.
We set a« = 1.0, which is a dimensionless constant indicating

Error(N) = , o)
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Accuracy comparison of the three methods in bcc lattice
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Figure 1. Error(N) of the three methods in bcc lattice in double-logarithmic plots. We assume that the band dispersion are
w = |K|, |k?, |k, |k|*, respectively. The data we adopt to line fitting is from N = 10? to 32% for GGR and tetrahedron method and is from
N = 15 to 32 for adaptive Gaussian broadening method. We note that the accuracy of tetrahedron method will be even worse in actual band

structures with band crossings.

Table 1. The fitting parameters of adaptive Gaussian broadening,
tetrahedron and our GGR method in figure 1.

P w=lk w=k w=k w=k
Gaussian —0.6545 —0.6314 —0.5882 —0.5118
Tetrahedron —0.7067 —0.7059 —-0.7103 —0.6712
GGR —-0.6786 —0.6757 —0.7353 —0.7625

the broadening level. We compared our GGR method pro-
gram to the original GR method program ‘GRINT’ on CPC
Program Library for simple cubic lattice. Our program of
tetrahedron method was compared with the program ‘tflo-
vorn/ctetra’ on github. In both methods, we got numerical
consistence.

4. DOS of gyroid photonic crystals

Using the GGR method, we computed the DOS of six gyroid
photonic crystals in figures 2(a)—(f), following the original
designs from [24, 25] in which the DOS data were not pre-
sented. The insets are the real-space geometries in bcc unit

cells. The band structures were calculated using MPB [26] for
the frequencies and group velocities at 15> uniformly-dis-
tributed k points in the whole BZ.

Figure 2(a) is the single gyroid having a large band gap.
Figure 2(b) is the double gyroid (DG) having a threefold
quadratic degeneracy. The DOS around the degeneracy point,
of frequency wy, shows a square-root relation of D
|w — wp|'/2. Figure 2(c) is the perturbed DG having a nodal
ring. The DOS around the degeneracy line shows approxi-
mately a linear relation of D « |w — wyl|. Figure 2(d) is the
parity (P)-breaking DG having two pairs of Weyl points.
Figure 2(e) is the time-reversal (7 )-breaking DG having one
pair of Weyl points. Figure 2(f) is the P-breaking DG having
two pairs of Weyl points of the same frequency, in which the
radius of the four defect air spheres is r = 0.09a. The DOS
around the above Weyl points all shows a roughly quadratic
relation of D o |w — wol?.

5. Computing efficiency

Figure 1 shows that the extrapolative GGR method is more
accurate than the interpolative tetrahedron method by utilizing
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(a) Band gap (single gyroid) (b)  3-fold quadratic point (double gyroid)
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Figure 2. DOS of six gyroid photonic crystals. Gyroid photonic crystal with a band gap (a), a quadratic degeneracy point (b), a line node (c)
and Weyl points (d)—(f). The designs of (a)—(e) are from [24] and the design of (f) is from [25]. Their dielectric constant is 16. Each inset
shows the unit-cell geometry of the crystal whose air-sphere defects are enlarged (0.13a) in the illustration for the easy of identification,
where a is the cubic lattice constant.
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the extra data of group velocities, which requires extra
computing time. Fortunately, the group velocities can be
efficiently computed using the Hellman—-Feynmann theorem

% = (Ukl%lUQ, where |Uy) is the periodic part of the

Bloch wave function and Hj is the Hamiltonian operator of
the system. Using MPB for example, the computation time for
band dispersions with and without group velocities only differ
by less than 2%. We note that the total computing time is
proportional to the number of k points N, in which the time
for computing DOS is negligible compared with the time for
computing the band dispersions.

6. Conclusion

In summary, we generalized the GR method to all Bravais
lattices using an affine transformation, which outperforms the
tetrahedron and adaptive broadening methods. Our GGR
method divides BZ into parallelepipeds and such an extra-
polation method is advantageous in treating band crossings
than interpolation methods. Future work includes high-order
extrapolations [27] and more versatile sub-cell division. Our
codes for the GGR and tetrahedron methods will be available
for download at https://github.com/boyuanliuoptics/DOS-
calculation.
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Appendix A. Equivalence between GGR and
improved GR method

Here, we prove that our GGR method is analytically
equivalent to the improved GR method in [6]. In the
improved GR method, the DOS contribution of one subcell is
given by

1 1

6N = ——
2 BiByB;

1 1 1
Z Z Z(_1)01+Uz+<73

(71:0 (72:0 (73:0

3 2 3
x[A——}Z(—DmBJ ><9(A——§:(—DWBJ,
i=1 i=1 (A.l)

where A = w — we, B = 3v - by /Ni(i = 1, 2, 3), 0(x) is the
Heaviside step function, w, is the frequency of central point of
the subcell, v is the group velocity of this subcell, b; is the
reciprocal vector, N; is the number of k points along the ith
dimension and N; = N, = N;.

In order to compare the expression (A.1) with that of our
GGR method, we expand the above summation (A.1):

sN——L 1
2 B1B,B3
X {[A — (Bi + By + B)P0(A — (Bi + By + B3))
+[A = (Bl — B, — B)FO(A — (Bi — B, — By))
+[A — (=B + By — By)PO(A — (—Bi + By — By))
+[A — (=B — By + B3)P0(A — (—B; — By + B3))
—[A — (=B — B, — B)PP0(A — (=B — By — By))
—[A — (=Bi + By + B3)P0(A — (=B + By + By))
—[A — (Bi — B, + By)P0(A — (B1 — By + B3))
—[A — (Bi+ B, — B)FO(A — (B + B, — By))).
(A.2)
Without loss of generality, we assume A >0 and

By > B, > B3 > 0. Then, expression (A.2) is transformed
into a piecewise form,

By

B> B+ B3,0 <A <A
1
1

10203
—(A +B})) BI<B,+B30<A<A
1
BB, B;

1
~A(—By + By + B3) — E(Az +BHl

Al <ALA
2

102

[2(B1B; + B>B3 + B3By)

[(B1By + 3B,B; + B3By))

SN = <

[(B1+ By) —A] Ay <A< A;

——[(B) + B, + B3) — AP
2B B,B, (B 2 3)

A3 <A <Ay
0 4> a4,

(A3)

where
By = (B{ + B} + B))"/>, A = |B, — B, — By,
Ay =B — By + B3), 4;

= (B; + By — B3), A4

= (B1 + B, + By).
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Next, we get the expression of DOS contribution of our
GGR method according to section 2,

((4p2
— v 2 Vo + 3 0 < Aw < w
Vi1
1 2
[2D°(viavia + viaviz + Vizvi)
ViiVi2 Vi3

— (Aw? + (vb)M)]
XV <V + 13, 0 < Aw < wy
1

Vi1Vi2 Vi3
.y —bAW(=v1 + Vo + V3) , (A4

—%(sz b)) w0 < Aw < w)

[b2 (Vaver + 3vovis + vizva)

dSt
A

2
ViiVr2
wr < Aw < w3

[b2(vi1 + Vo) — vibAW]

1
————[bn + v + v3) — Aw]?
211V Vi3

w3 < Aw < wy
\O AW>W4

where Aw = w — w, and v, = |v|. b = 1/(2N,) is half side
length of subcell of the transformed cubic region. Similarly,
we assume that Aw >0 and v; > v, > v, > 0, where
Vi = Vi - by is the component of transformed v; (i = 1, 2, 3).
And
wry=b(Vi —vo+v3), w3y =
wy = b+ via + v3)

The expressions of DOS calculation from one subcell
(B.1) and (A.4) are equivalent. They only differ by a constant
which is dS,/thl = 6N/(8N1N2N3)

wy = blvy — vo — v3l,
b1+ vo — vi3)

Appendix B. GGR method in 2D

In order to use 3D GGR method for 2D lattices, we simply
duplicate the frequency bands along a third imaginary
dimension, so that the same GGR formulation applies with
the following caveat.

In 3D, the DOS formula (A.4) is continuous (shown in
figure 1 in [2]). However, for the extended 2D bands, the
derivative of DOS is discontinuous due to vz = 0, w; = w,
and w3 = wy. Thus, the 2D formula becomes

2
46 0 < Aw < wy

s _ )

I 2 (2 (i + vi2) — vibAw] w < Aw < ws
Vi1Vr2

(B.1)

whose first derivative is discontinuous at Aw = w;. This
discontinuity and the vanishing quadratic terms (Aw?) lead to
a zigzag DOS plot. The zigzag behavior also exists in the
tetrahedron method for the same reason, when being extended
to 2D.

ORCID iDs

Boyuan Liu ® https: //orcid.org/0000-0002-5108-5812

References

[1] Morris A J, Nicholls R J, Pickard C J and Yates J R 2014
Optados: a tool for obtaining density of states, core-level and
optical spectra from electronic structure codes Comput.
Phys. Commun. 185 1477-85
[2] Gilat G and Raubenheimer L J 1966 Accurate numerical
method for calculating frequency-distribution functions in
solids Phys. Rev. 144 390-5
[3] Raubenheimer L J and Gilat G 1967 Accurate numerical
method of calculating frequency distribution functions in
solids: II. Extension to hcp crystals Phys. Rev. 157 586-99
[4] Kam Z and Gilat G 1968 Accurate numerical method for
calculating frequency distribution functions in solids: III.
Extension to tetragonal crystals Phys. Rev. 175 1156
[5] Finkman E, Kam Z, Cohen E and Gilat G 1971 Accurate
numerical method for calculating spectra in solids: IV.
Extension to trigonal crystals J. Phys. Chem. Solids 32 2423-7
[6] Bross H 1993 On the efficiency of different schemes for the
evaluation of the density of states and related properties in
solids Phys. Status Solidi b 179 429-39
[7]1 Yates J R, Wang X, Vanderbilt D and Souza I 2007 Spectral
and fermi surface properties from wannier interpolation
Phys. Rev. B 75 195121
[8] Pickard C J and Payne M C 1999 Extrapolative approaches to
brillouin-zone integration Phys. Rev. B 59 4685
[9] Pickard C J and Payne M C 2000 Second-order k p
perturbation theory with vanderbilt pseudopotentials and
plane waves Phys. Rev. B 62 4383

Lehmann G and Taut M 1972 On the numerical calculation of
the density of states and related properties Phys. Status
Solidi b 54 469-77

Jepson O and Anderson O K 1971 The electronic structure of
hep ytterbium Solid State Commun. 9 1763-7

Blochl P E, Jepsen O and Andersen O K 1994 Improved
tetrahedron method for brillouin-zone integrations Phys.
Rev. B 49 16223

Methfessel M S, Boon M H and Mueller F M 1983 Analytic-
quadratic method of calculating the density of states J. Phys.
C: Solid State Phys. 16 1.949

Boon M H, Methfessel M S and Mueller F M 1986 Singular
integrals over the brillouin zone: the analytic-quadratic method
for the density of states J. Phys. C: Solid State Phys. 19 5337

Methfessel M S, Boon M H and Mueller F M 1987 Singular
integrals over the brillouin zone: inclusion of k-dependent
matrix elements J. Phys. C: Solid State Phys. 20 1069

Miiller J E and Wilkins J W 1984 Band-structure approach to
the x-ray spectra of metals Phys. Rev. B 29 4331

Busch K and John S 1998 Photonic band gap formation in
certain self-organizing systems Phys. Rev. E 58 3896

Johnson P M, Koenderink A F and Vos W L 2002 Ultrafast
switching of photonic density of states in photonic crystals
Phys. Rev. B 66 081102

Nikolaev I S, Vos W L and Koenderink A F 2009 Accurate
calculation of the local density of optical states in inverse-
opal photonic crystals J. Opt. Soc. Am. B 26 987-97

Kano P, Barker D and Brio M 2008 Analysis of the analytic
dispersion relation and density of states of a selected
photonic crystal J. Phys. D: Appl. Phys. 41 185106

Liu V and Fan S 2011 Efficient computation of equifrequency
surfaces and density of states in photonic crystals using
Dirichlet-to-Neumann maps J. Opt. Soc. Am. B 28 183743

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]


https://orcid.org/0000-0002-5108-5812
https://orcid.org/0000-0002-5108-5812
https://orcid.org/0000-0002-5108-5812
https://orcid.org/0000-0002-5108-5812
https://doi.org/10.1016/j.cpc.2014.02.013
https://doi.org/10.1016/j.cpc.2014.02.013
https://doi.org/10.1016/j.cpc.2014.02.013
https://doi.org/10.1103/PhysRev.144.390
https://doi.org/10.1103/PhysRev.144.390
https://doi.org/10.1103/PhysRev.144.390
https://doi.org/10.1103/PhysRev.157.586
https://doi.org/10.1103/PhysRev.157.586
https://doi.org/10.1103/PhysRev.157.586
https://doi.org/10.1103/PhysRev.175.1156
https://doi.org/10.1016/S0022-3697(71)80238-X
https://doi.org/10.1016/S0022-3697(71)80238-X
https://doi.org/10.1016/S0022-3697(71)80238-X
https://doi.org/10.1002/pssb.2221790218
https://doi.org/10.1002/pssb.2221790218
https://doi.org/10.1002/pssb.2221790218
https://doi.org/10.1103/PhysRevB.75.195121
https://doi.org/10.1103/PhysRevB.59.4685
https://doi.org/10.1103/PhysRevB.62.4383
https://doi.org/10.1002/pssb.2220540211
https://doi.org/10.1002/pssb.2220540211
https://doi.org/10.1002/pssb.2220540211
https://doi.org/10.1016/0038-1098(71)90313-9
https://doi.org/10.1016/0038-1098(71)90313-9
https://doi.org/10.1016/0038-1098(71)90313-9
https://doi.org/10.1103/PhysRevB.49.16223
https://doi.org/10.1088/0022-3719/16/27/002
https://doi.org/10.1088/0022-3719/19/27/010
https://doi.org/10.1088/0022-3719/20/8/010
https://doi.org/10.1103/PhysRevB.29.4331
https://doi.org/10.1103/PhysRevE.58.3896
https://doi.org/10.1103/PhysRevB.66.081102
https://doi.org/10.1364/JOSAB.26.000987
https://doi.org/10.1364/JOSAB.26.000987
https://doi.org/10.1364/JOSAB.26.000987
https://doi.org/10.1088/0022-3727/41/18/185106
https://doi.org/10.1364/JOSAB.28.001837
https://doi.org/10.1364/JOSAB.28.001837
https://doi.org/10.1364/JOSAB.28.001837

J. Opt. 20 (2018) 044005

B Liu et al

[22] Gilat G 1972 Analysis of methods for calculating spectral
properties in solids J. Comput. Phys. 10 432-65
[23] Wiesenekker G and Baerends E J 1991 Quadratic integration

over the three-dimensional brillouin zone J. Phys.: Condens.

Matter 3 6721
[24] Lu L, Fu L, Joannopoulos J D and Soljaci¢ M 2013 Weyl

points and line nodes in gyroid photonic crystals Nat.
Photon. 7 294-9

[25] Wang L, Jian S-K and Yao H 2016 Topological photonic crystal
with equifrequency weyl points Phys. Rev. A 93 061801

[26] Johnson S G and Joannopoulos J D 2001 Block-iterative
frequency-domain methods for maxwell’s equations in a
planewave basis Opt. Express 8 173-90

[27] Saye R I 2015 High-order quadrature methods for implicitly
defined surfaces and volumes in hyperrectangles SIAM J.
Sci. Comput. 37 A993-1019



	1. Introduction
	2. Generalizing GR method by affine transformation
	3. Accuracy comparison between three methods
	4. DOS of gyroid photonic crystals
	5. Computing efficiency
	6. Conclusion
	Acknowledgments
	Appendix A.Equivalence between GGR and improved GR method
	Appendix B.GGR method in 2D
	References

