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Dirac materials, unlike the Weyl materials, have not been found in experiments to support intrinsic
topological surface states, as the surface arcs in existing systems are unstable against symmetry-preserving
perturbations. Utilizing the proposed glide and time-reversal symmetries, we theoretically design and
experimentally verify an acoustic crystal of two frequency-isolated three-dimensional Dirac points with Z2

monopole charges and four gapless helicoid surface states.
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A three-dimensional (3D) Dirac point [1] disperses the
same way as the solutions to the massless Dirac equation at
the vicinity of the fourfold linear point degeneracy. Playing
a central role in 3D band topology, Dirac points can, upon
symmetry breaking, transition into Weyl points, line nodes
or topological band gaps with gapless surface states.
Although 3D Dirac points have been experimentally dis-
covered in electron [2–7], magnon [8,9], and photonic [10]
systems along with a variety of other theoretical proposals
[11–23], none of the surface states are topological.
Specifically, there have been no robust gapless surface
bands associated with the bulk Dirac points [24–26].
The current lack of topological surface states for Dirac

points can be understood through the anticrossing of two
Weyl surface states. Illustrated in Fig. 1, the topological
surface dispersion of a Weyl crystal is a doubly periodic
helicoid sheet whose singularities locate at the projection of
the bulk Weyl points. The chirality of the helicoid around
each Weyl point equals the sign of its Chern number. Since
a Dirac point is composed of two Weyl points of opposite
Chern numbers, the Dirac surface state should be composed
of two helicoids of opposite chiralities. Two opposite
helicoid surfaces generally cross each other along a line
of momenta and anticross (hybridize with each other),
resulting in gapped surface bands which are topologically
trivial. The only exception was theoretically proposed in
Ref. [27], in which the glide symmetries combined with the
time-reversal (T ) can stabilize a degenerate line and protect
the crossing of the helicoids. As illustrated in Fig. 1, one
glide can protect double helicoids and two glides can
protect quad-helicoid surface states.
In this work, we present an acoustic band structure with

two ideal Z2 Dirac points protected by glide reflections.
The acoustic crystal is 3D printed and the measured surface
dispersions exhibit quad-helicoid surface sheets.

Ideal acoustic Dirac points.—The cubic cell of the
acoustic crystal, in Fig. 2(a), consists of thick rods and
thin sticks, belonging to space group Ia3̄ (No. 206) of the
body-centered-cubic (BCC) lattice. The four thick rods of
radius 0.15a point at the directions of the BCC lattice
vectors, where a is the lattice constant of the cubic cell.
These disconnected rods form the blue phase I (of liquid
crystal) photonic crystal in Refs. [28,29]. We add the thin
sticks to connect all rods and mechanically support the
whole structure. The sticks are too thin, 0.025a in radius to
change the Dirac acoustic bands, as compared in the
Supplemental Material [30]. The background material is
air and the interfaces are treated as sound hard-wall
boundaries in numerical simulations.
There are two Dirac points located at the !P points of

the BCC Brillouin zone [BZ, Fig. 2(b)], where four bands
(from the fifth to the eighth in ascending energy order)
meet, as shown in Fig. 2(c). The density of states (DOS)
[31] vanishes at the Dirac frequency and grows quadrati-
cally away from it, as expected for linear dispersion
relations.
The local Hamiltonian of this Dirac point is HðkÞ∼

ðk·σ0
0

−k·σÞ, determined by the k · p analysis detailed in the
Supplemental Material [30]. This fourfold degeneracy is
joined, due to the antiunitary parity-time symmetry
(PT ), by two conjugated 2D representations of the
little group. The little group of No. 206 at P also has a
fourfold representation which is the generalized Dirac
point discussed in Refs. [28,29]. The Dirac point has
identical group velocities while the generalized one
does not.
Each Dirac point is stabilized by the products of T

and the three noncommuting glides (Gx¼fMxjða=2Þx̂ þ
ða=2Þŷg;Gy¼fMyjða=2Þx̂g;Gz¼fMzjða=2Þŷg), denoted
as GiT ði ¼ x; y; zÞ. Mi are the mirror operations and the
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inversion P ¼ GxGyGz. Each GiT symmetry enforces a
line degeneracy at the zone boundary, represented by the
dashed lines in all figures consistently. The three degen-
eracy lines intersect at the P point, shown in Figs. 2(b)
and 2(e). We note that the P points have neither T nor Gi
symmetries by themselves.
Z2 monopoles.—The Dirac point is the symmetry-pro-

tected Z2 monopole in the 3D momentum space [32–34].
However, the Z2 symmetries in the these systems (PT for
example) cannot protect any line degeneracies on the
surface, disallowing the gapless connectivity between
two helicoids of opposite chiralities. In contrast, the Z2

invariant of our acoustic Dirac point is protected by GiT
[27], leading to the nontrivial band topology not only in the
bulk, but also on the surface.
In Fig. 2(d), we calculate the non-Abelian Berry phase

[35] of the lower two bands (5th and 6th) on a sphere
enclosing the Dirac point. The gapless spectra indicate the
nontrivial monopole charge of Z2 ¼ 1. Since this Z2 charge
can be protected by either one of the threeGiT [27], we can

break the other two or one GiT to get the Z2 nodal ring
[36–40] and Weyl dipoles [27,32,41]. These symmetry-
breaking cases are illustrated in Figs. 2(e), 2(f) and 2(g) and
are discussed in detail in the Supplemental Material [30].
Quad-helicoid and Jacobi elliptic function.—We project

the two Dirac points onto the (001) surface, corresponding
to the case in Figs. 1(c), 1(f) and 1(i). The plane group of
this surface is p2gg, on which the two degenerate lines due
to GxT and GyT are presented. These two line degener-
acies, outlining the whole boundaries of the surface BZ,
protect all the crossings among the four helicoid surface
sheets. The isofrequency contours, in Fig. 1(c), are four
branches originating from the projected Dirac points. The
four branches are connected across the zone boundary
forming two noncontractible loops.
If we parametrize the 2D surface BZ as a complex plane

(z ∝ kx þ iky) [27], the helicoid surface bands can be
expressed as (are topologically equivalent to) the double-
periodic elliptic functions [42,43]. The four helicoids in
Fig. 1(f) are plotted using the Jacobi elliptic functions
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FIG. 1. Bulk monopoles and helicoid surfaces. (a), (b), (c) are the 3D BZ containing two Z or Z2 monopoles. (a), (b) can be the BZs of
cubic lattices, while (c) is the BZ of the BCC lattice in our acoustic design. The arcs, at the bottom plane, are the isofrequency contours
of the helicoid surface states at frequency ω0 labeled in (d), (e), (f). The glide planes are fill in gray and the GiT protected line
degeneracies are shown in dashed gray lines. (g), (h), (i) illustrate the gapless surface dispersions, around the projected monopoles, along
a circular path of k̄θ in the surface BZ. The Z monopoles can be Weyl points, nodal lines, or surfaces. The Z2 monopoles can be Dirac
points, Z2 nodal lines, or Weyl dipoles.
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cnðz; 12Þ. The Jacobi function has two zeros and two poles in
one period, each locating at the center of each quadrant.
These four singularities represent two Weyl dipoles, and
all project to the same point in the surface BZ. So,
we construct the quad-helicoid surfaces by stacking the
four quadrants of the Jacobi function and align the
central singularities. The mapping of one quadrant is
ωðkx; kyÞ ∼ Imðlogfcn½ziðkx; kyÞ; 12'gÞ, where z1ðkx; kyÞ ¼
½Kð12Þ=π'½kx − ky=2 þ iðkx þ ky=2Þ' and K is the complete
elliptic integrals of the first kind. The rest of the three
quadrants are obtained by the translations of z2ðkx; kyÞ ¼
z1ðkx þ 2π; kyÞ, z3ðkx;kyÞ¼z1ðkx;kyþ 2πÞ, and z4ðkx;kyÞ¼
z1ðkxþ 2π;kyþ 2πÞ.
Experiments.—A photograph of the Dirac acoustic

crystal is shown in Fig. 3(a), 3D printed by the stereo
lithography method using photocurable resin. The lattice
constant is a ¼ 20 mm and the fabrication error is
!0.1 mm. The total size of the sample is 413.0×
413.0 × 222.8 mm containing 20 × 20 × 11 cubic cells.
The surface states are measured through the Fourier-

transformed field scan (FTFS). Similar approaches have
been used to study other topological acoustic crystals [44–
48]. A pressure-field microphone (diameter of 3.5 mm,
B&K-4138-A-015) is used as the scanning probe (receiver).
The microphone is embedded in an aluminum alloy plate

which works as a hard wall boundary on the top surface of
the sample, as shown in Fig. 3(a). The acoustic source is a
broadband earphone, having frequency response up to
40 kHz and a diameter of 5.5 mm, fixed at the corner of
the sample close to the plate. The amplitude and phase of the
pressure field are collected by the data acquisition module
B&K-3160-A-042. A broadband signal is generated from
the module and split into two channels, one to drive the
earphone and the other as a time reference for the receiver.
The frequency spectrum is averaged 100 times for each point
scan and is normalized by the signal from the source.
The field scan is performed by moving the sample stage

in three directions. During the collection of each data point,
the sample is pressed towards the top plate to ensure the
absence of air gaps. The scanning step is 5 mm and the
scanning range is 400 mm in both x and y directions.
Through 2D Fourier transforms, we obtain the spectral
weight of the surface states in the momentum range of
ð−2; 2Þ 2π=a. Similar to the processing technique used in
Ref. [49], we patch the data of spatial scans to double the
momentum resolution in the reciprocal space. In the x
direction, we stitch two scanning fields of equivalent source
positions. In the y direction, we rotate the data due to the C2

symmetry on the surface.
The FTFS results are shown in three plots in Figs. 3(d),

3(f), and 3(h). The corresponding numerical results of the

(e)

(a) (b) (c)

(f) (g)

FIG. 2. Ideal acoustic Dirac points with Z2 charges. (a) One cubic cell of the acoustic crystal of BCC lattice. (b) BCC BZ and the [001]
surface BZ. The two !P points project to the same point M̄ in the surface BZ. (c) Acoustic bulk band structure with the Dirac points
crossing between the 5th and 6th bands and the 7th and 8th bands at the P point. The DOS vanished at the frequency of ideal Dirac
points. (d) Calculated non-Abelian Berry phases on the surface of the red sphere enclosing the Dirac point. Over the polar angle, the
nontrivial winding of Berry phases implies the topological invariant of Z2 ¼ 1. (e), (f), (g) Three types of four-band nodal structures that
carry Z2 monopole charges. The dashed gray lines are the line degeneracies due to GiT , and the red spherical surfaces enclose the Z2

monopoles.
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local DOS (LDOS)[50] at the measurement interface are
shown in Figs. 3(c), 3(e), and 3(g), respectively. The detailed
algorithm of the surface LDOS will be presented in a
separate paper. The agreement between experiments and
numerics are visually obviously for the gapless surface
dispersions.
Discussion.—We experimentally observed the first exam-

ple of topological surface states associated with the 3D Dirac
points, while there is no topological edge states associated
with the 2D Dirac points. The line degeneracy due to glide
and T symmetry are the keys for stabilizing the gapless
connection of helicoid sheets of opposite chiralities.
Similarly, the other nonsymmorphic symmetry (screw rota-
tion) and T could also protect such line degeneracies when a
domain wall is constructed to preserve the screw axis on the
surface. It will also be interesting to explore the material
realization of the double-helicoid surface states shown in
Fig. 1(e), as well as helicoid surface states of Dirac
semimetals [27].
This work establishes an ideal 3D Dirac material for

consequent studies. For example, symmetry breakings of
Dirac points can generate a variety of topological phenomena,

such as the charged (Z or Z2) nodal lines, nodal surfaces
[51,52], Weyl dipoles, as well as a gapped bulk state support-
ing gapless surface [28] or chiral hinge modes [53,54].
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I. UNIT CELL DESIGN
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FIG. S1: Design of ideal acoustic Dirac point without and with the thin sticks. (a), (c) BPI acoustic crystal of space group
No. 230. (b), (d) Thin-stick joined BPI acoustic crystal of space group No. 206.

For sample stability, we add the 12 thin sticks of diameter 0.05a (1 mm in experiment) to connect all the BPI rods.

Fig. S1(a), (b) are the unit-cell structures without and with thin sticks, they belongs to space group No. 230 and

No. 206 respectively. The thin sticks preserve the three glides that protect the ideal Dirac points. The corresponding

acoustic bulk bands are plotted in Fig. S1(c), (d), which are almost identical for the frequency range of the Dirac points.
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II. k · p MODEL

The local dispersion and topology at P point can be described by the e↵ective Hamiltonian of k · p model, written

as H(k) = Ak · p, considering the first non-zero order of k. Here, we show the detailed derivation of the e↵ective

Hamiltonian of our ideal acoustic Dirac point in space group Ia3̄d (No. 230) and Ia3̄ (No. 206).

Considering the space group Ia3̄d (No. 230), we choose four independent symmetry operations (generators) of

the little group at momentum point P . They are two-fold rotation symmetry C2z = {C2|(0, 1
2 , 0)} along [001]

direction, two-fold rotation symmetry C2y = {C2|( 12 , 0, 0)} along [010] direction, three-fold rotation symmetry C3

along [111] direction and glide reflection symmetry G = {M |(� 3
4 ,�

3
4 ,

1
4 )} in [11̄0] plane. Here G is di↵erent from the

Gi (i = x, y, z) glides in [100], [010], [001] planes. P point has no Gi (i = x, y, z) symmetries, but has GiT that can

be obtained by GiT = C2i · PT (i = x, y, z). PT is the parity-time symmetry preserves in the whole BZ.

P point has PT but has neither P nor T . PT is an anti-unitary operator which can be written as PT = U · K,

where U is a unitary matrix and K is the complex conjugate. The little group of P point has two conjugated 2D

representations, forming a 4D representation under PT . We obtain the irreducible representation (Irrep) matrices of

the selected generators from Bilbao crystal server, noted as Bilbao Rep. in Table II. After unitary transformations,

we have the representation matrices in real basis (Real Rep.) and in Dirac basis (Dirac Rep.). 1

Operators Bilbao Rep. Real Rep. Dirac Rep.

C2z

0

BBB@

i 0 0 0

0 �i 0 0

0 0 i 0

0 0 0 �i

1

CCCA

0

BBB@

0 0 0 1

0 0 1 0

0 �1 0 0

�1 0 0 0

1

CCCA

0

BBB@

i 0 0 0

0 �i 0 0

0 0 i 0

0 0 0 �i

1

CCCA

C2y

0

BBB@

0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

1

CCCA

0

BBB@

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0

1

CCCA

0

BBB@

0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

1

CCCA

C3
1p
2

0

BBB@

e
i 34⇡

e
i 74⇡ 0 0

e
i 54⇡

e
i 54⇡ 0 0

0 0 e
i 34⇡

e
i 74⇡

0 0 e
i 54⇡

e
i 54⇡

1

CCCA
1
2

0

BBB@

�1 �1 �1 �1

1 �1 �1 1

1 1 �1 �1

1 �1 1 �1

1

CCCA
�1
2

0

BBB@

1� i �1� i 0 0

1� i 1 + i 0 0

0 0 1� i �1� i

0 0 1� i 1 + i

1

CCCA

G

0

BBB@

0 1 0 0

i 0 0 0

0 0 0 �1

0 0 �i 0

1

CCCA
�1
2

0

BBB@

0 1 + i 0 1 + i

1 + i 0 �1� i 0

0 �1� i 0 1 + i

1 + i 0 1 + i 0

1

CCCA

0

BBB@

0 0 0 �i

0 0 �1 0

0 �i 0 0

�1 0 0 0

1

CCCA

PT �22K K (complex conjugate) �22K

H(k)
(�x + w�y)⌦

(kz�z + kx�y � ky�x)

(�kx�10 � ky�33 + kz�31)

+w(�kx�30 + ky�13 � kz�11)

p
1 + w2�z ⌦ k · �

mass m�30 +m
0(�20 � w�10) m�20 +m

0(�32 � w�12) m�10 +m
0�20

TABLE I: Representation matrices of selected generators of the little group at P in space group No. 230. The four matrices in
the gray cells are obtained from Bilbao website and the rest are worked out by commutation relations.

We need to find the representation matrix for PT which is not given by Bilbao. We expand the 4D unitary U matrix

by the 16 Gamma matrices with complex coe�cients and determine the coe�cients by the commutation relations in

Table II.

PT = U · K C2z C2y G C3

PT PT 2 = 1 UU
† = 1 [C2z,PT ] = 0 [C2y,PT ] = 0 G(PT ) = i(PT )G [C3,PT ] = 0

TABLE II: Compatibility relations used to determine PT .

The sixteen Gamma matrices are �ij = �i ⌦ �j , (i, j = 0, 1, 2, 3), where �0 = ( 1 0
0 1 ),�1 = ( 0 1

1 0 ),�2 = (
0 �i
i 0 ),�3 =

(
1 0
0 �1 ), and ⌦ is the Kronecker product.

The Hamiltonian can be written as H(k) = A(kxpx + kypy + kzpz), where kx, ky, kz are three real variables (the

origin is set at P in below), and px, py, pz are three Hermitian matrices. To find px, py, pz, we expand them as
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linear combinations of 16 Gamma matrices with real coe�cients and determine the coe�cient by the commutation

relations in Table. III.

For any representation matrix D(g) of symmetry operation g (including PT ) in the little group, we have

D(g)H(k)D�1
(g) = H(gk) (1)

that gives the following commutation ([]=0) and anti-commutation ({}=0) relations, listed in Table. III.

pz py px

PT [PT , pz] = 0 [PT , py] = 0 [PT , px] = 0

C2z [C2z, pz] = 0 {C2z, py} = 0 {C2z, px} = 0

C2y {C2y, pz} = 0 [C2y, py] = 0 {C2y, px} = 0

G [G, pz] = 0 Gpy = pxG

C3 py = C
�1
3 pzC3, px = C3pzC

�1
3

TABLE III: Compatibility relations used to determine H(k).

By satisfying all the requirements in Table. III, for Bilbao Rep. we obtain pz = �13 + w�23, (w 2 R). px and py

are obtained from pz by C3 symmetry. Ignore the constant term A, the e↵ective Hamiltonian is given as

HD(k) ⇠ (�x + w�y)⌦ (kz�z + kx�y � ky�x) (2)

After an unitary transformation, we get the representation matrix under Dirac Rep.

HD(k) ⇠
p
1 + w2

 
k · � 0

0 �k · �

!
(3)

where w 2 R is the velocity term. Note that the Dirac Hamiltonian we obtained above satisfies the exact massless

Dirac equation in 3D. What listed in the last row of Table. I are the matrix of the Dirac mass terms, in corresponding

basis with coe�cients m,m
0 2 R.

For space group No. 206, the only missing generator is G = {M |(� 3
4 ,�

3
4 ,

1
4 )} in [11̄0] plane, and the Dirac

Hamiltonian under Bilbao Rep. is

HD(k) ⇠ (�x + w�y + u�z)⌦ (kz�z � kx�x � ky�y), (w, u 2 R) (4)

After an unitary transformation, we have the representation matrix under Dirac Rep.

HD(k) ⇠
p
1 + w2 + u2

 
k · � 0

0 �k · �

!
(5)
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III. DIRAC POINT UNDER SYMMETRY BREAKINGS

Dirac point lies in the phase transition center of many topological band nodal structures. In Table. IV we list the

possible four bands nodal structures that can be achieved from perturbing the Dirac point, and list the corresponding

key symmetries that need to be preserved(
p
) or broken(⇥).

1

Z2 Dirac

point

Z2 nodal

ring

Z2 Weyl

dipole

gapped

Dirac
gapped

Weyl

points

nodal

ring

Z2 1 0

Realization Fig. S2(a) Fig. S2(b) Fig. S2(c) - - - -

k

!

Space group
No. 230 No. 088 No. 120 No. 220 - - -

No. 206 No. 015 No. 045 No. 199 - - -

PT
p p

⇥ ⇥ ⇥ ⇥
p

GiT
p p

⇥ ⇥ ⇥ ⇥ ⇥
Gj,kT

p
⇥

p
⇥ ⇥ ⇥ ⇥

C3
p

⇥ ⇥
p

⇥ ⇥ ⇥
l0, l1, l2 0, 0, 0 l0, 0, 0 0, l1, 0 0, 0, l2 0, |l1| < |l2| 0, |l1| > |l2| -

Hamiltonian
H(k) ⇠ HD(k) + l0�13 + l1�03 + l2�30, (l0, l1, l2 2 <)

HD(k) ⇠ (�x + w�y)⌦ (kz�z + kx�y � ky�x)

TABLE IV: Possible results of the Dirac point transition under symmetry breaking.
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IV. REALIZATION OF VARIOUS SYMMETRY BREAKINGS

1

Unit cell

(a) No. 230

(b) No. 088

(c) No. 120

Acoustic bulk band structure

(d)

(e)

(f)
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FIG. S2: Realization of the predicted symmetry breaking results. (a), (d), (g) Two Dirac points (black spheres) in the first BZ,
locate at point ±P . The dashed gray lines denote for the GiT stabilized line degeneracies. (b), (e), (h) The Dirac points turn
into Z2 nodal rings (black circle). The GzT stabilized degenerate lines, between lower or higher two bands, perpendicularly
cross the rings and form nodal links within the four bands. (c),(f),(i) The Dirac points split into Z2 Weyl dipoles (blue and red
spheres for opposite chiralities). Since the two surface glides are not broken, the quad-helicoid surface states are still robust.
Note that each one of GxT , GyT is enough for keeping the Z2 Weyl dipoles, but we need both to keep the quad-helicoid on
001 surface.
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V. COMPARISON OF EIGENVALUE AND LDOS CALCULATIONS

1

(a) Eigenvalue calculation of surface states
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(b) LDOS calculation of surface states

(c) Eigenvalue calculation of surface states
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(d) LDOS calculation of surface states

FIG. S3: Surface states in eigenvalue solutions and LDOS results. (a),(c) The surface states dispersion are obtained by solving
the eigenvalue equation for a ten cubic cell stack with Floquet periodic boundary conditions in x and y directions and hard-wall
boundaries on z and -z ends. The dispersion lines were colored in red if they have a large energy fraction in the first two cells
on the surface. The results agree the local density of states (LDOS) results in (b),(d), respectively.
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VI. ADDITIONAL EXPERIMENTAL RESULTS
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(a) Numerical result of surface states
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(b) Experimental result of surface states

(c) Numerical result of surface states
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(d) Experimental result of surface states

FIG. S4: Full frequency range data of the numerical and measured surface states.
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VII. MORE DETAILS ON EXPERIMENTAL MEASUREMENTS

Mass density Longitudinal sound velocity Acoustic impedance

⇢ (kg/m3) vL (m/s) Z = ⇢ · vL (N · s/m3)

Air 1.2 343 412

Cured resin ⇠1140 ⇠2240 ⇠2.55e6

TABLE V: Material properties of air and cured resin of 3D printing. Due to the 6200 times higher acoustic impedance of resin,
the air-resin interface can be treated as hard-wall boundary conditions in calculations. The pressure field inside the resin are
ignored.

(a) Experiment setup A (b) Experiment setup B

(c) Measured surface states in setup A (d) Measured surface states in setup B

(e) Measured surface states in setup A (f) Measured surface states in setup B

y

x

z

FIG. S5: Experimental data from di↵erent positions of the source excitations. (a) Setup A with the source fixed at the top
corner of the sample, whose measurement results are shown in (c) and (e). (b) Setup B with the source fixed at the center of
top edge of the sample, whose measurement results are shown in (d) and (f).


