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A. TOPOLOGICAL UNDERSTANDING OF DFB AND VCSEL
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FIG. S1. Mid-gap modes in VCSEL and DFB. Here the refractive index contrast is magnified, from that

in real devices, to better illustrate the topological feature (that the topological mode is localized spatially at

the kink and spectrally at the middle of the gap). In both simulations, the 1D layers are quarter-wavelength

stacks and the central defect layers have an optical path of half wavelength (phase of π). This π phase is the

reason for the anti-phase resonant condition at Bragg frequency and also the reason for the difference of π

Berry phase of the bulk lattices on the two sides of the kink. One example of VCSEL layers can be found in

the following book ( Physics of Photonic Devices, 2nd Edition, Shun Lien Chuang, Chapter 11, Page 506,

Figure 11.13.)
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B. FSR IMPROVEMENTS
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FIG. S2. We investigate the FSR improvements of the Dirac-vortex cavity versus the regular ring and Fabry-

Perot resonators on SOI and at 1.55µm wavelength, using effective 2D simulations (refractive index of 2.6

and 1). The modes in a ring resonator are doubly degenerate (CW and CCW modes) and its FSR is twice

of that of the singly-degenerate Fabry-Perot resonator with the same length. We compare the single-mode

Dirac-vortex cavity with the Fabry-Perot resonators of the the same area (volume). The Dirac-vortex FSR,

vortex diameter of 50µm, is 8.2 times larger than that of the Fabry-Perot and is 89.6 times larger if the

vortex diameter is 500µm. Overall, the FSR of a Dirac-vortex is one to two order of magnitudes larger than

that of conventional cavities of the same mode volume.
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C. k · p HAMILTONIAN

Symmetry H(k) σxkxτz σzkyτz m1τx m2τy m
′σyτz

[H ,Sym.]=0

Time reversal T = τxK|k→−k
√ √ √ √ √

Parity/Inversion P = τx|k→−k
√ √ √

× ×

Parity-Time PT = K
√ √ √

× ×

{H ,Sym.}=0
Particle-hole/Charge-conjugation C = σyτyK|k→−k

√ √ √ √
×

Chiral S = T C = σyτz
√ √ √ √

×

TABLE S1. Symmetry analysis of the 2D Bosonic Dirac Hamiltonian (H) of four bands. Chiral symme-

try (S) is the protecting symmetry. K is the complex conjugation. |k→−k represents the momentum flip.
√

and × are used to indicate whether a term in Hamiltonian is invariant under each symmetry or not. τi and

σi are both Pauli matrices. [] and {} are commutator and anti-commutator.

D. CHOICE OF CAVITY CENTER FOR C3v SYMMETRY

（A）w = 3n+1 =-2,+1,+4 （B）w = 3n+2 = -1,+2,+5 w = 3n+3 = -3,0,+3（C）

FIG. S3. A total of three different choices for cavity centers to keep the cavityC3v symmetric for all winding

numbers (w). The gray triangle is the stationary sub-lattice. The three triangles of the shifted sub-lattice in

each supercell are colored by their initial relative phase φ0 (the direction of the shift). The vortex size is

R = 0a for the three examples with winding numbers of w = +1, w = −1 and w = +3.

Only the central seven super-cells are illustrated.
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E. NEGATIVE WINDING NUMBERS
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FIG. S4. TOP: Comparison between positive and negative winding numbers of the Dirac vortex cavi-

ties (2R = 0a). In all four cases, we choose the cavity centers so that the cavities are C3v symmetric. We

also provide vortices with −x axes as the zero-phase reference line in gray background. All four cavities,

of opposite winding numbers and different reference phase angles, are not symmetry related structures in

our design. The field energy peaks at different sub-lattices (triangles pointing to the right or left) of the hon-

eycomb lattice for opposite winding numbers. BOTTOM: Negative winding numbers of w = −1,−2,−3

and 2R = 100a.
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F. PURCELL FACTOR
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FIG. S5. The dependance of Q, V and Q/V (Purcell factor) on the shape factor α of the vortex cavity by

3D FDTD. As can be seen from the low Purcell factor, this cavity is not designed to enhance spontaneous

emission in the first place.
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G. CONSTANT MODE FREQUENCY
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FIG. S6. Fine-tuning the central air-holes so that the cavity frequency is nearly independent of vortex size

(α = 4). In the large cavity limit, the cavity resonates at the Dirac frequency, because the cavity mode

experiences large areas of the unperturbed Dirac lattice at the centeral area of the vortex. In the small cavity

limit, the cavity mode only experiences the defect site and its frequency does not need to stay at the Dirac

frequency. So, we enlarge or shrink a few central air holes to tune the frequencies of the small-cavities;

this local perturbation does not affect the frequencies of the large-cavities whose modes are much more

extended in area.
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H. ALL CAVITY MODES
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FIG. S7. Modal properties of all cavity modes (w = +1) from 2D simulations and experiments. The Y

symmetry is determined by the Hz field. The polarization states in the far-fields are plotted in detail for the

five non-degenerate modes and their experimental Q values are also listed.
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I. SINGLE-LOBE BEAM WITH NON-UNIFORM PHASE WINDING
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FIG. S8. The donut beam can be converted to a single-lobe beam, useful for some applications, by varying

the angular distribution of the phase of the Dirac gap (mass). 3D calculations show that the Q and frequency

of the cavity do not vary much due to the phase nonuniformity.
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J. SUBSTRATE COMPATIBILITY (ALL SEMICONDUCTOR)
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FIG. S9. Band structures of all semiconductor PCSEL designs, in which the air voids in Fig. 4 of main text

are filled with substrate materials. Compared to the air-voids design, the all semiconductor design has a

larger critical substrate index ncsub ≈ 3.0 in (A) and ncsub ≈ 3.3 in (B). TM-like modes are plotted for the

nsub = 1.0 cases only. The light cone, filled by gray color, drops as nsub increases.
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K. CAVITIES OF w = +1,+2,+3
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FIG. S10. Experimental and simulation results of the cavities with winding numbers w = +1,+2,+3 and

modulation amplitude m0 = 50nm. In these cases, we fixed the cavity center (see Fig. S3) so that only

the w = +1 cavity is C3v symmetric and the w = +2,+3 cavities have all singlet modes. Since C3v has

a doublet representation, so if we choose the corresponding centers to enforce w = +2,+3 cavities to be

C3v symmetric, two of the modes will be degenerate in both cases.
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L. CROSS-POLARIZATION REFLECTION SETUP
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FIG. S11. Cross-polarized reflectivity measurement setup. The polarization beam splitter (PBS) is the key

optical element enabling the measurement. The PBS has two functions. First, the PBS separates the pump

beam and sample emission, sharing the same wavelength, by reflecting the pump beam in one polarization

while passing partial sample emission containing the other polarization. Second, the transmitted beam after

PBS reveals the polarization states of the cavity far fields. The number of zero-intensity radial lines on

camera equals the topological charge (in magnitude) of the emitted vector beam.

M. VARY m0 AND R IN EXPERIMENTS
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FIG. S12. The Qs and resonant wavelengths (λ) of the single-vortex (w = +1) cavities measured as a

function of the modulation amplitude m0 and vortex size R. In both cases, Q increases with the increase

of mode area, because the mode area increases with the decrease of modulation amplitude and the increase

of vortex size. For positive winding numbers, the wavelengths of small cavities are longer than the original

Dirac wavelength.
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