
PHYSICAL REVIEW RESEARCH 2, 022066(R) (2020)
Rapid Communications
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Theories of symmetry-based indicators and topological quantum chemistry, while powerful in diagnosing
gapped topological materials, cannot be directly applied to diagnosing band degeneracies at/between high-
symmetry momenta due to the violation of the compatibility conditions. However, the only information that
compatibility condition can tell us is whether there are band degeneracies at/between high-symmetry momenta
or not. Here we design a recursive protocol that utilizes indicators of maximal subgroups to infer the topological
information of band degeneracies crossing high-symmetry lines without implementing a heavy numerical
calculation, such as the existence, type, number, configuration for the band degeneracies, and so on. For
demonstration, the method is used to predict the existence of ideal Weyl phonons in In2Te and node-cage phonons
in ZrSiO, respectively.

DOI: 10.1103/PhysRevResearch.2.022066

Introduction. Theories of symmetry-based indicators [1]
and topological quantum chemistry [2] are useful in diag-
nosing topological materials, such as topological insulators
[3,4], topological crystalline insulators [5], and topological
semimetals [6]. However, the application of those theories
needs to meet one condition, i.e., compatibility condition,
which restricts the number of each irreducible representation
for the occupied band at several high-symmetry points (HSPs)
in the Brillouin zone (BZ). When the condition is satisfied,
there will be no band crossings at/between HSPs, as shown
in Fig. 1(a), or band crossings along high-symmetry lines
(HSLs) can be gapped without changing the order of bands
between the occupied bands and unoccupied bands at HSPs
(see the Supplemental Material for details [7]). Among the
cataloged topological materials, topological semimetals diag-
nosed by the compatibility condition are the majority, which is
more than 62% in the spinful case and 98% in the “spinless”
case (ignoring spin-orbit coupling) [8–10], corresponding to
the case in Fig. 1(b). For such huge amounts of topological
semimetals, the only information that the previous work tells
us is whether the topological degeneracy is at a HSP or along a
HSL. Other topological information, such as the type, number,
configuration, and positions for the topological degeneracies
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are missed. The incomplete information for the topological
degeneracies is due to the imperfect algorithm in the previous
work. Therefore, a method to diagnose whole information for
such topological degeneracies is highly deserved.

The importance of such information, however, is high-
lighted in the research of topological semimetals, such as
Weyl semimetals [11–15], Dirac semimetals [16–19], and
node-line semimetals [20,21]. The nontrivial topology of band
degeneracies in some of these materials leads to unique
surface states having “Fermi arcs” [22–25] as well as an
anomalous bulk transport phenomenon known as the “quan-
tum anomaly” [26–30]. Topologically nontrivial band de-
generacies appear not only in electronic bands but are also
predicted and observed in the bands of bosons such as photons
[25,31–33], phonons [34–48], and magnons [49,50].

In this Rapid Communication, we develop a routine for
topological-diagnosing band degeneracies located along high-
symmetry lines in the BZ, which can be used in both spinful
and spinless systems with/without time-reversal symmetry.
In the following, we will discuss our algorithm in AI class
systems as an example, which corresponds to orthogonal
Hamiltonians [51–53]. (Discussions on spinful systems are in
the Supplemental Material [7].) Given a band structure that
violates the compatibility conditions of some space group G,
we first identify, through a “tree-search” process, the maxi-
mum subgroup H ⊂ G, such that the compatibility conditions
of H are satisfied, and then compute the symmetry-based
indicators with respect to H . The value of the symmetry-based
indicator for this subgroup then reveals partial information
on topological invariants of the band degeneracies protected
by G, which has not been discussed in detail before [6,9,10].
For example, the lowest six phonon bands of In2Te violate
the compatibility conditions of #216. Figure 1(c) shows all
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FIG. 1. (a) and (b) show two different kinds of band structure
along a high-symmetry line. The red line represents the occupied
band, and the blue line represents the unoccupied band. HSP1 and
HSP2 represent two different high-symmetry points in the Brillouin
zone. The band structure in (a) satisfies the compatibility condition,
while (b) does not. (c) shows the tree-search process for #216, which
is the key step in our diagnosis algorithm. #82 is the only maximum
subgroup which has a nontrivial symmetry-based indicator and sat-
isfies the compatibility condition for the lowest six phonon bands of
In2Te.

subgroups of space group #216, from which we identify #82
as the maximum subgroup that has nontrivial indicator group
(Z2) and satisfies the compatibility condition at the same time.
We then compute the Z2 indicator for #82 and find z2 = 1,
which by Ref. [6] ensures that the band degeneracies between
the sixth and the seventh bands are Weyl points of equal
energy. We also apply the method to the phonon bands of
ZrSiO and show the presence of a “nodal cage” in its band
structure.

Flowchart for the recursive algorithm. The diagnosing
process for topological degeneracies in the Brillouin zone is
summarized in Fig. 2(a), which consists of five steps. In step
I, symmetry data, i.e., irreducible representation, at a given
list of high-symmetry momenta should be calculated by first-
principles calculations. In step II, analyze if two conditions,
i.e., the nontrivial-symmetry-based-indicator-group condition
(INDC) and compatibility condition (CC) are satisfied by the
space group and the symmetry data, respectively. If INDC
and CC are both satisfied, which corresponds to “YY” in the
flowchart, then we can calculate the symmetry-based indicator
directly by Ref. [6] to get the information of topological
band degeneracies at generic momenta in the BZ. If INDC
is not satisfied while CC is, which corresponds to “NY” in the
flowchart, then the system is in a “trivial” state. (Here “trivial”
means that of an atomic insulator, i.e., band degeneracies in
the Brillouin zone, can be gapped out without changing the
order of bands between the occupied bands and unoccupied
bands at high-symmetry momenta.) In other cases, CC is not
satisfied, i.e., band degeneracies will exist at high-symmetry
points or along high-symmetry lines, so we should use a new

method to diagnose the information for band crossings in the
BZ. In step III, we find all the maximal subgroups of G, and
choose one subgroup H from this set, and test if the INDC
and CC are satisfied: If the answer is YY, we proceed to
step IV; if the answer is others, we replace H by its lower
subgroups to repeat the recursive process step III, until we get
an answer of YY or the subgroup is #1. In step IV, we should
use the symmetry-based indicator formula of H to diagnose
the topological degeneracy information of space group G, no
matter whether the indicator is zero or not. In step V, the
indicator of the subgroup H can tell us the information of
topological degeneracies crossing high-symmetry lines, such
as types, configuration, positions, and topological charge for
the topological degeneracies in the BZ. If the process stops at
#1 in step IV, we conclude that the nodes cannot be further
diagnosed by eigenvalues at all (nondiagnosable). After the
process, each band node protected by G is to be found either
as nondiagnosable, or as having a list of subgroups with
corresponding indicators, which carry topological information
on these nodes.

Figure 2 also lists two materials for the demonstration of
our recursive algorithm in phononic systems. Figure 2(b) is an
example of In2Te, which has a noncentrosymmetric structure
and 12 ideal Weyl points in the phonon spectra. Figure 2(c) is
an example of ZrSiO, which has a centrosymmetric structure
and nodal cage band degeneracies in the phonon spectrum.
Both of the cases break CC in step II.

Diagnosing process for ideal Weyl phonons in In2Te. In2Te
belongs to a P-broken space group F 4̄3m (#216) [54], as
shown in Fig. 3(a). The band crossing at around 3.22 THz
(Ew) indicates that CC is broken along the X -W direction for
the lowest six bands, as shown in Fig. 3(e). In the following,
we will get the complete information for the band crossing at
around 3.22 THz by using the diagnosing method shown in
Fig. 2(a).

After obtaining symmetry data for #216 in step I [55,56],
we notice that CC for #216 is not satisfied along the X -W
direction, which is not a surprise because of the band crossing
in phonon spectra. However, there is not a nontrivial indicator
for space group #216 in step II. Therefore in step III, we
map each irreducible representation from #216 to #82 (I 4̄),
which is the maximum subgroup both having a nontrivial
indicator Z2 and satisfying CC. In step IV, we calculate
the topological invariant of subgroup #82 and get a nonzero
indicator z2 = 1, which indicates that there will be 4 mod 8
Weyl points on the kz = 0 plane (which is also the k3 = 0
plane) between the sixth and seventh bands. In the following,
we will provide an intuitive perspective to understand how to
get the complete information for the topological degeneracies
at high-symmetry momenta for #216 from the indicator of the
subgroup #82.

Figure 3(c) shows the BZ for space group #82, which has a
similar shape with the one for #216 shown in Fig. 3(b). Since
there are two pieces of plane for the k3 = 0 plane in Fig. 3(c),
we can rebuild the BZ by dividing the blue quadrilateral plane
into four pieces and fill them into the pink plane separately
to get a new quadrilateral k3 = 0 plane. In this case, the high-
symmetry point M1 in the old BZ is M2 in the new BZ. Since
there are 4 mod 8 Weyl points on the k1 = 0 plane, shown
by red and green dots in Fig. 3(c), we find that there will be
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FIG. 2. (a) Calculation steps for diagnosing topological degeneracies in the Brillouin zone. SG: space group; IND: indicator; CC:
compatibility condition; N: No; Y: Yes. Firstly, obtain the symmetry data by first-principles calculations, and feed them into the next step.
Secondly, check whether the space group G has a nontrivial indicator and whether the symmetry data satisfies compatibility conditions. If both
the answers are yes, we can use the symmetry data to calculate the indicator directly and get the information of topological degeneracies at
generic momenta for AI class systems. If the answers are “NY,” which corresponds to the condition of “No” to “space group with nontrivial
symmetry-based indicator” and “Yes” to “satisfy compatibility condition,” the material is a topologically trivial one, i.e., no topological
degeneracies exist in the Brillouin zone. Otherwise, topological degeneracies will exist at high-symmetry momenta, such as high-symmetry
points and high-symmetry lines. Thirdly, we should find all the maximum subgroups H which have a nontrivial symmetry-based indicator
group and satisfy the compatibility condition at the same time in the tree-search process. After calculating the symmetry-based indicator for
each maximum subgroup H in step IV, we can get information of topological degeneracies for space group G. However, if we cannot find a
subgroup H in step III, then the topological degeneracies only can be diagnosed by compatibility condition. (b) In2Te and (c) ZrSiO are two
examples for demonstrating our diagnosis scheme for AI class systems.

12 mod 24 Weyl points in the BZ after considering all the
symmetry operators of #216, especially C3 symmetry around
the (111) direction. A detailed calculation confirms that there
are 12 robust Weyl points related to each other by symmetries
at around 3.22 THz, confined on the k1 = 0, k2 = 0, and k3 =
0 planes.

We note that 12 Weyl phonons at around 3.22 THz are ideal
ones, which are related to each other by symmetries and have
equal energies, as shown in Fig. 3(d). There are another 12
Weyl phonons at around 2.58 THz, with the same indicator
z2 = 1 for the subgroup #82. Surface states and surface arcs
for Weyl phonons are discussed in the Supplemental Material
[7].

Diagnosis process for ZrSiO. ZrSiO has a centrosymmetric
structure with space group P4/nmm (#129) [57], as shown
in Fig. 4(a). ZrSiO is a nodal-line semimetal for electronic
structures when the spin-orbit coupling is ignored [20] and
features the same topological properties for phonon spectra.
Figure 4(b) shows the phonon bands for ZrSiO, which have
several band crossings at around 13 THz along several high-
symmetry lines. We will discuss what they are, and whether
they are topologically protected in the following.

After obtaining the symmetry data for phonons by density-
function perturbation theory in step I, we find out that they do
not satisfy the CC along !-X , !-M, Z-A, and Z-R directions
for the 14 lowest bands in step II. Violation of CC indicates
that a band degeneracy will exist between the 14th and 15th
bands at those four high-symmetry lines, which also means
that we can use the recursive algorithm to figure out the
complete topological information for the degeneracies. In step
III, we find that the maximum subgroups satisfying INDC
and CC are #81 and #2 after iterating several times. Here, we
would like to note that #81 and #2 belong to different “tree
branches,” which means that neither of them is a subgroup of
the other one.

The indicator group for #81 is Z2 × Z2, and the corre-
sponding topological invariants for phonons in ZrSiO are
(00). Even though the topological invariants are zero, they
can still tell us that there will be 0 mod 8 band crossings
at both the kz = 0 plane and the kz = π plane. As shown in
Fig. 4(d), band crossings are marked by pentagrams. Since
(PT )2 = +1 in ZrSiO, all the band crossings must belong
to nodal lines/rings. Therefore a possible configuration for
the band degeneracies in ZrSiO diagnosed by #81 is 0 mod
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FIG. 3. (a) Crystal structure for In2Te. (b) Brillouin zone and sur-
face Brillouin zone along the (111̄) direction for #216. (c) Brillouin
zone for #82. (d) Distribution for 12 ideal Weyl points between the
sixth and seventh phonon bands in the surface Brillouin zone at Ew ,
where green dots represent Weyl points with Chern number of −1
and red dots represent Weyl points with Chern number of +1. (e)
Phonon spectra for In2Te.

8 nodal lines crossing both the kz = 0 plane and the kz = π
plane along the (001) direction, as shown in Fig. 4(d).

The indicator group for #2 is Z2 × Z2 × Z2 × Z4, and the
corresponding topological invariants are (0012) for phonons
in ZrSiO. Those nonzero indicators tell us another possi-
ble configuration for the topological degeneracies in BZ,
and we offer two different perspectives to understand it. (i) Be-
cause indicator groups are Abelian groups, indicators satisfy
the sum rule. Thus (0012) can be written as (0001)+(0011),
which indicates a single nodal ring around the ! and Z
points by Ref. [6], respectively. Mz symmetry in ZrSiO will
restrict those two nodal rings in the kz = 0 and kz = π plane,
which corresponds to the configuration shown in Fig. 4(e). (ii)
z2 = 1 and z4 = 2 indicate that any curved surface in the BZ
passing !, X , and M points (or R, A, and Z points) will be
crossed by nodal lines 2 mod 4 times. Therefore one possible
configuration is one nodal ring lying on the kz = 0 and kz = π
plane, respectively, which also matches Fig. 4(e) well.

FIG. 4. (a) Crystal structure, (b) phonon spectra, and (c) Bril-
louin zone for ZrSiO. Purple lines in (c) are nodal lines calculated by
first-principles calculations. (d)–(f) are the predicted configurations
for node-line degeneracies between the 14th and 15th phonon bands
by our algorithm. All the nodal lines carry a quantized π Berry
phase.

In the last step, we can get the complete configuration for
topological degeneracies in BZ by combining the indicators
of subgroup #81 and #2. First-principles calculations show
that there are ten nodal lines including two nodal rings in the
BZ, i.e., node-cage degeneracies shown in Fig. 4(c), which
perfectly matches the diagnosing results in Fig. 4(f).

Conclusion. We designed a recursive algorithm for diag-
nosing the complete information of topological degeneracies
crossing high-symmetry lines by using the indicators of max-
imum subgroups. This recursive algorithm can be used in any
system with T 2 = +1 and compensates for the shortcomings
of the previous method, which can only be used in systems
satisfying compatibility conditions, i.e., no band degeneracies
at high-symmetry points or along high-symmetry lines. In two
examples for phonon bands, i.e., In2Te and ZrSiO, we diag-
nosed all the topological degeneracies in the Brillouin zone
successfully, which verifies the effectiveness of the diagnosing
method.
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FIG. 1. Three kinds of band connection along a high-symmetry line. (a-b) are both the cases that satisfy compatibility

condition, and (c) is the case that violate it.

I. CALCULATION METHODS

In this paper, phonon dispersions of ZrSiO and In2Te are calculated by Vienna ab initio simulation package
(VASP), based on density functional perturbation theory (DFPT). Exchange-correlation potential is treated within
the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof type. The wave functions are expanded
in plane waves with a kinetic energy cuto↵ of 400 eV and a sum on a Monkhorstpack grid of 4 ⇥ 4 ⇥ 4 k points for
integrals over the BZ for a 3⇥3⇥3 supercell approach for both ZrSiO and In2Te. The crystal structure has been fully
relaxed until the residual force on each atom is less than 0.001 eV/Å before the phonon spectra calculation. Chern
numbers of the Weyl points are calculated by Wilson loop method. The second-order tensor of the force constant
including the non-analytical term in Cartesian coordinates is calculated for the first step, then the Green’s function
is used to obtain the surface local density of states[1–3].

II. COMPATIBILITY CONDITION

Compatibility condition only depends on the number of irreps for the occupied bands at high-symmetry points,
which means this condition can only tell us the band connection between high-symmetry points, i.e., diagnosing
whether there is a band crossing along high-symmetry lines or not. Thus, if the symmetry data at high-symmetry
points satisfy the compatibility condition, then there will be no band inversions along high-symmetry lines, as shown
in Fig. 1(a). However, if there is one, the band inversion can be gapped out with a perturbation, as shown in
Fig. 1(b). If the symmetry data at high-symmetry points doesn’t satisfy the compatibility condition, then there must
be a topological band crossing along a high-symmetry line, as shown in Fig. 1(c).

For example, SrSi2[4] is a Weyl semimetal having a band inversion like Fig. 1(b) along �-X direction. Although the
symmetry data for SrSi2 satisfies the compatibility condition, however, it is a topological semimetal instead of trivial
states. In both our manuscript and the previous symmetry-based indicator theories, “gapped trivial phase” means
that all the band crossings can be gapped out without changing the order of irreps between the occupied bands and
unoccupied bands at high-symmetry momenta, no matter how large the perturbation will be. Thus, SrSi2 will be
diagnosed as a trivial insulator because the band inversion along �-X direction can be gapped out without changing
the order of irreps at high-symmetry points.

III. FURTHER DISCUSSIONS ON THE ALGORITHM

Here we would like to discuss more on the case where #1 will be the end. Before the discussion, we note that, even
a zero symmetry-based indicator is obtained in step IV, we should continue to step V instead of going back to step
III.

There are six space groups that will end up with #1 if the compatibility condition is violated, because they only
have one operator generator. Those six space groups are #3 and #5 (which only have a C2 rotation symmetry), #6
and #8 (which only have a mirror symmetry), #143 and #146 (which only have a C3 rotation symmetry). Space
group #2 also only have one generator, which is inversion symmetry, however, compatibility for #2 is always satisfied
regardless of the irreducible representations (irreps) at high-symmetry momenta. Thus, topological degeneracies in
#2 can always diagnosed by symmetry-based indicator.

For example, we consider a material with space group #6, which only has a mirror symmetry. According to our
algorithm, if the symmetry data violates the compatibility condition in step II, we should use the subgroup for further



3

Point Group LA irreps TA irreps Point Group LA irreps TA irreps

C1 / / D2 B1 B2, B3

C2 A B,B D3 A2 E

C3 A E D4 A2 E

C4 A E D6 A2 E1

C6 A E
0

D2d B2 E

C2v A1 B1,B2 D3d A2u Eu

C3v A1 E C1h A
00

A
0
, A

0

C4v A1 E C2h Au Bu,Bu

C6v A1 E1 C3h A
00

E
0

D2h B1u B2u,B3u C4h Au
1
Eu+

2
Eu

D3h A
00
2 E

0
C6h Au

1
Eu+

2
Eu

D4h A2u Eu T T

D6h A2u E1u Th Tu

S2 Au Au,Au O T1

S4 B E Td T2

S6 Au
1
Eu,

2
Eu Oh T1u

TABLE I. Irreducible representations of acoustic phonon branches at � point for 32 point groups. LA stands for a longitudinal

acoustic branch, while TA stands for a transverse acoustic branch.

diagnosis in step III. However, because the space group #1 is the only subgroup of #6, this case is classified as
“topological degeneracies diagnosed by compatibility condition”. This occurs when there is a nodal line/ring on a
mirror plane. Other cases of ”topological degeneracies diagnosed by compatibility condition” is the Weyl points on a
C2/C3-axis protected by the C2/C3 symmetry.

Algorithm proposed in this paper can also be applied to other symmetry classes, such as class AII with spin-orbit
coupling. In class AII, we just need to replace the indicator formulae into spinful ones in step IV, and we can obtain
trivial/topological (crystalline) insulator states in the last step. For example, Na3Bi withe space group #194 is a
famous Dirac semimetal protected by time-reversal symmetry and C3 symmetry, and the symmetry data will break
compatibility condition in step II. By ignoring the C3 symmetry in step III, we will obtain a subgroup with #12.
Indicators for subgroup #12 are z2z2z4=(003), which corresponds to a topological insulator, meaning that breaking
C3 symmetry will lead to a topological phase transition to a topological insulator. Such kind of diagnosing process in
class AII starting from a topological semimetal and ending with a trivial/topological (crystalline) insulator, will o↵er
a way to modulate topological phase transitions for experiments.

We also would like to note that not all gapped phases protected by the subgroup H will be forbidden by the space
group G, even though sometimes we can obtain a gapped phase for H when there is a band inversion in G. For
example, Bi2Se3 with space group #166 is a topological insulator, which will still be a topological insulator if we
break the C3 symmetry and have a subgroup #2. Thus, Bi2Se3 is a material where a gapped phase will exist in both
the subgroup H and the space group G.

IV. IRREDUCIBLE REPRESENTATIONS FOR ACOUSTIC PHONONS AT � POINT

A phonon is one of the widely studied particles in AI class systems. In three dimensional (3D) phonon systems, three
acoustic phonons are degenerated since they are Goldstone excitations, and have specific irreducible representations
once we know the symmetries of the system. In particular, the little group at the � point is equal to a point group, so
there are only 32 kinds of Goldstone modes for 3D materials. All the irreducible representations of acoustic phonons
for each point group are listed in Table. I.
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FIG. 2. (a) Brillouin zone and surface Brillouin zone along (111̄) direction for In2Te. (b) Surface states for In2Te along (111̄)

direction. (c) Iso-energetic surface for In2Te at 3.22THz along (111̄) direction. (d) Iso-energetic surface for In2Te at 2.58THz

along (111) direction.

V. SURFACE STATES AND ARCS FOR IN2TE AT 3.22THZ AND 2.58THZ

Helical and topological one-way surface states are unique features for Weyl materials, which is distinguished from
topologically trivial materials. The helical surface states will develop into an open surface arc when we draw an
isoenergetic surface in the surface BZ, whose ends are pinned to the projection of Weyl points from the 3D BZ. To
gain more insight of its topological nature, we calculate the local density states and the iso-frequency surface contours
on the (111̄) surface in Fig. 2 (b-c) and on the (111) surface in Fig. 2 (d).

Symmetries left on the (111̄) surface are three-fold rotation symmetry along (111) direction 3+111, mirror symmetry
perpendicular to (011) direction m011 , and time-reversal symmetry T , which makes a hexagonal surface BZ along
(111̄) direction shown in grey in Fig. 2(a). For the ideal Weyl phonons at around 3.22 THz (EW ), one Weyl phonon
with right-hand chirality is projected onto W2, and another Weyl phonon with left-hand chirality is projected onto
W1, as shown in Fig. 2(c). This pair of Weyl phonons, called P1, are connected by m011 symmetry. Other two pairs of
Weyl phonons P3, P5 are related to P1 by 3+111 symmetry, and those three pairs of Weyl phonons are associated with
the other three pairs by T , just like Fig. 2(c). Each surface arc connects two Weyl points with opposite chirality and
constrained by 3+111, m011 , and T in the surface BZ. Both the density of states for the bulk phonons in the main text
and the clean iso-energetic surface in Fig. 2(c) prove that phonons at EW are ideal Weyl phonons without coexisting
trivial surface states or bulk dispersions.

Figure 2(d) shows the positions of 12 Weyl points at around 2.58THz (EW 0) along (111) direction. Symmetries left
on the (111) surface are the same as (111̄) surface. However, the iso-energetic contour shows that 12 Weyl phonons
at EW 0 is not clean due to the existence of bulk pockets. In addition, the distribution of the six pairs of Weyl points
and associated surface arcs are exactly the same with the other six pairs at EW .

VI. WEYL POSITIONS FOR IN2TE AT 3.22THZ AND 2.58THZ

We list all the positions for Weyl phonons at both 3.22THz and 2.58THz. The fractional coordinate kj = 0.5�ki =
0.1334 is for the six pairs of Weyl points at EW , and kj = 0.5� ki = 0.0986 is for the other six pairs of Weyl points
at EW 0 .
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Weyl Name W1 W2 W3 W4 W5 W6

Position in 3D BZ (�ki, 0.5,kj) (0.5,�ki,kj) (0.5,�kj,�ki) (�ki,kj, 0.5) (�kj,ki, 0.5) (kj, 0.5,ki)

Weyl Name W7 W8 W9 W10 W11 W12

Position in 3D BZ (ki, 0.5,�kj) (0.5,ki,�kj) (0.5,kj,ki) (ki,�kj, 0.5) (kj,�ki, 0.5) (�kj, 0.5,�ki)

TABLE II. Weyl positions in the 3D BZ. .


