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Abstract: Gapped systems with glide symmetry can be characterized by a Z2 topological
invariant. We study the magnetic photonic crystal with a gap between the second and third
lowest bands, which is characterized by the nontrivial glide-Z2 topological invariant that can
be determined by symmetry-based indicators. We show that under the space group No. 230
(Ia3̄d), the topological invariant is equal to a half of the number of photonic bands below the
gap. Therefore, the band gap between the second and third lowest bands is always topologically
nontrivial, and to realize the topological phase, we need to open a gap for the Dirac point at the P
point by breaking time-reversal symmetry. With staggered magnetization, the photonic bands
are gapped and the photonic crystal becomes topological, whereas with uniform magnetization,
a gap does not open, which can be attributed to the minimal band connectivity exceeding two
in this case. By introducing the notion of Wyckoff positions, we show how the topological
characteristics are determined from the structure of the photonic crystals.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Manipulations of magnetic topological materials are an intriguing and promising topic in
condensed matter physics. In particular, a glide-symmetric topological crystalline insulator (TCI)
exhibits a Z2 topological phase in class A hosting a single surface Dirac cone topological phase
with the nontrivial Z2 topopogical invariant [1–4]. One of our targets for material realizations
is bosonic systems. In photonics, a new type of topological band-crossing points beyond the
Weyl and Dirac points emerges. For example, at a generalized Dirac point [5], the bands are
four-fold degenerate and they split into three or four bands along any direction, in contrast with a
Dirac points, which generally splits into two sets of double degenerate bands along any direction.
When the system is perturbed, this generalized Dirac point becomes line nodes, Weyl points, or
opens a band gap [5,6]. As an example, in the photonic crystal having a structure in the first
blue phase of liquid crystals (BPI) [5] shown in Fig. 1, by introducing magnetization to break
time-reversal symmetry (TRS) the generalized Dirac point opens a band gap and the system goes
into topological phases protected by glide symmetry. On the other hand, in the double gyroid
(DG) photonic crystal [6] (Fig. 1(b)) belonging to the same space group 230 (henceforth, we
call a space group by its number in bold italic following in Ref. [7]) with the BPI photonic
crystal, the system has Weyl points [8] between the fourth and fifth lowest bands in the absence
of TRS. Nonetheless, how the band structures and topological properties are determined from
the structure of the photonic crystals needs to be clarified.

In the present paper, we show how this topological phase can be manipulated, based on the
relationship between space group representations and band structures. In the BPI photonic crystal,
the gap opening at non-equivalent P and P′ points in the Brillouin zone (BZ) (Fig. 1(c)) makes
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Fig. 1. The BPI and DG photonic crystals in the body-centered cubic (BCC) lattice and
their Brillouin zone (BZ) of the BCC lattice. (a) The BPI photonic crystal, shown in the
cubic unit cell of length a. It consists of four identical dielectric rods oriented along the
BCC lattice vectors along (111) (red), (111̄) (yellow), (11̄1) (blue) and (1̄11) (green), and
they go through the points (0,0,0)a, (0,0.5,0)a, (0.5,0,0)a and (0,0,0.5)a, respectively. (b)
The DG photonic crystal whose dielectric regions are given by g(r)>λiso = 1.1 (blue) and
g(−r)>λiso = 1.1 (red) of Eq. (2). (c) The BZ of the BCC lattice and its high-symmetry
points Γ, P, N and H.

the system gapped and topologically nontrivial. However, the reason why this structure leads
to the topolgical phase, and how the eigenmodes at these P and P′ points affect the topological
phase is not yet clear. In this paper, we clarify these points, by using the formula of the glide-Z2
invariant which we derived in our previous paper [9]. In particular, in the space group 230, which
the photonic crystals in the previous works [5,6] belong to, the topological invariant is equal to a
half of the number of bands below the gap in terms of modulo 2, and therefore, the gap between
the second and third lowest bands is always topologically nontrivial. On the other hand, in the
presence of the TRS, since all modes at the P points are fourfold degenerate, the band gap between
the second and the third lowest modes is closed at the P point. Therefore, we conclude that when
this gap is open by breaking the TRS, the photonic crystal is a topological one protected by the
glide symmetry, as has been realized in the BPI photonic crystal [5] with staggered magnetization.
We also show that it automatically becomes a higher-order topological insulators [10–15]. On
the other hand, in a uniform magnetization, a gap does not open between the second and third
lowest bands, which is explained by the notion of the minimal band connectivity [16]. Then, we
propose a way to design such a topological photonic crystal by introducing the notion of Wyckoff
positions into the design of photonic crystals.

This paper is organized as follows. Section 2 is devoted to reviewing the previous works
necessary for the discussion of the main part of this paper. In Sec. 3, we analyze the
irreducible representations of the photonic crystals considered, and discuss which cases will
realize topological photonic crystals. In Sec. 4 we introduce the notion of the Wyckoff positions
into the design of the photonic crystals, and discuss the relationship between the positions of the
dielectrics and topological phases. We conclude the paper in Sec. 5.

2. Z2 topological photonic crystal with glide symmetry

In this section, we first review the BPI photonic crystal, which is proposed to be in the topological
phase with glide symmetry in Ref. [17], and then we analyze its characteristics from our
viewpoint.

2.1. Review on the BPI topological photonic crystal

We consider a 3D photonic crystal in a body-centered cubic (BCC) lattice, composed of four
identical dielectric rods. A schematic illustration of the system is shown in Fig. 1(a). We take the
x, y, z axes to be parallel to the edges of the cubic unit cell. The four dielectric rods are along
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the BCC primitive vectors along (111), (111̄), (11̄1) and (1̄11), and they go through the points
(0,0,0)a, (0,0.5,0)a, (0.5,0,0)a and (0,0,0.5)a, respectively, where a is the lattice constant of the
cubic cell. The space group is 230 (Ia3̄d), which is nonsymmorphic, containing glide reflections
and inversion.

When we set the dielectric constant of the rods to be ε = 11 and the radius of the rods to be
r = 0.13a, the fourfold generalized Dirac point appears at two non-equivalent P points in the
BZ formed by the bands 1, 2, 3 and 4 counted from the lowest band (Fig. 2(b)), because of the
cubic and time-reversal (TR) symmetries [5]. If the magnetization is present in these rods with
the glide symmetry preserved, the band structure acquires a band gap between bands 2 and 3
by breaking the TRS and it becomes the topological phase with the nontrivial Z2 topopogical
invariant [1–3] protected by glide symmetry [5]. To be more specific, in the dielectric tensor of
the rod ε, we add off-diagonal imaginary terms κ, which breaks TRS,

ε =

⎛⎜⎜⎜⎜⎝
ε∥ κ 0

−κ ε∥ 0

0 0 ε33

⎞⎟⎟⎟⎟⎠
, (1)

where ε∥ (>0) and ε33 (>0) are dielectric constants with ε2
∥
− |κ |2 = ε2

33 [5,6], and κ is a non-zero
imaginary number. These off-diagonal imaginary terms lead to gyroelectric response of materials
[18]. Similarly, gyromagnetic response in ferrites is generated by off-diagonal terms of the
permeability tensor [19]. In the calculation, the off-diagonal terms are introduced in a staggered
way as κ = ±10i,±10i,∓10i,∓10i with ε33 = 11 for the dielectric rods along (111) (red), (111̄)
(yellow), (11̄1) (blue) and (1̄11) (green) shown in Fig. 1(a). In Fig. 2(a) and (c), we show the
band structures of the BPI photonic crystal with these two patterns of the sign of κ, with the rod
along the (111) direction having κ(111) = ±10i, respectively. This value of κ does not reflect
that in real materials, but is only for demonstration of the behaviors of the gap. At κ(111) = 0
preserving TRS, a four-fold degenerate generalized Dirac point exists at the P point (Fig. 2(b)).
Then by breaking the TRS via nonzero κ(111), a band gap opens between the bands 2 and 3 at the
P points, and both of these cases with κ(111) = ±10i are found to be topological in Ref. [5].

Fig. 2. Band structures for (a)-(c) the BPI photonic crystal. The band structures with
magnetization where (a) ε33 = 11 and κ = 10i, 10i,−10i,−10i and (c) with ε33 = 11
and κ = −10i,−10i, 10i, 10i for the red, yellow, green and blue rods shown in Fig. 1(a),
respectively, are exactly the same, because of the TRS, and both sides are topological.

2.2. Discussion on symmetry and topology of the topological photonic crystal

Thus, regardless of the sign of κ(111), the band gap opens at the P point and this gap becomes
topological. This is related with the fact that the irreducible representations (irreps) at the P points
do not affect the values of the topological invariant; namely, the gap at P is inverted between
κ(111) = +10i and κ(111) = −10i, but it does not affect the topological invariant. This situation is
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similar to the Kane-Mele model, which is a well-known model for the two-dimensional topological
insulator (TI) phase with TRS [20,21]. The Kane-Mele model is topological, regardless of the
sign of the spin-orbit coupling λso, which opens the gap at the K point. Thus both in the BPI
photonic crystal and in the Kane-Mele model, the topological invariant is independent of the
irreps at P or K points, and regardless of the sign of the parameter (κ(111) or λso) to open a gap,
the system becomes topological as long as the parameter is nonzero. More details are presented
in Sec. S1 in Supplement 1.

3. Symmetry consideration for band theory of glide-symmetric Z2 magnetic topo-
logical photonic crystals

In this section, we discuss what determines the topological invariant in the photonic crystal from
the symmetry viewpoint. We first investigate the irreps for the glide-symmetric Z2 magnetic
topological photonic crystals, i.e. the BPI [5], and DG [6] photonic crystals. Then, we calculate
the glide-Z2 invariant by using our new formula derived in Ref. [9].

3.1. Representations at the high-symmetry points from symmetry considerations

Fig. 3. Band structures for BPI and DG photonic crystals. Band structures for (a) ε = 1,
which is an air band structure embedded into the Brillouin zone of the body-centered cubic
(BCC) photonic crystal. Band structures are shown for the BPI photonic crystal (b) at ε = 4,
(c) at ε = 11, and for the DG photonic crystal (d) at ε = 4, (e) at ε = 9, (f) at ε = 16. In (b)
and (d) we show the irreps for some of the lowest bands at H, P and N points mentioned
in the text. There is (a) a twelve-fold, (b), (c) two-fold (H1 irrep), and (d)-(f) four-fold
degeneracy (H2H3 irreps) in the lowest bands at the H point.

We first explain irreps at high-symmetry points in the BZ in the space group No. 230. There
are four kinds of high-symmetry points Γ, H, N, and P in the BZ (see Fig. 4(c)). Among these
four high-symmetry points, the points Γ, H, and N are TRIMs in BZ, but P is not. Even though P
is not a TRIM, the bands at the P point should be degenerate in the presence of TRS. This double
degeneracy comes from combined symmetry T ′ = TGy where T is time-reversal operation, and
Gy is the glide symmetry Gy = {My |

a
2 ẑ}, where x̂, ŷ and ẑ denote the unit vectors along x, y, and z

directions, respectively. As T ′ is an antiunitary symmetry, and it satisfies (T ′)2 = G2
y = Tz = −1

https://doi.org/10.6084/m9.figshare.16574360
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at the P point, where Tz = {E |aẑ}, and E is an identity operation, the bands are always doubly
degenerate at the P point.

Our strategy is the following. We first start with a vacuum having a homogeneous dielectric
constant ε = 1. Thereby, the eigenmodes behave as electromagnetic plane waves with a linear
polarization in free space. From symmetry considerations for these plane-wave basis functions,
we can identify representations at high-symmetry points which characterize the eigenmodes
at ε = 1 (Fig. 3(a)). Next, we gradually increase the dielectric constant from ε = 1 within
the dielectrics to describe a photonic crystal. Then, the eigenmodes split into irreps at the
high-symmetry points in the BZ, from which we discuss the topological invariant.

As an example, let us consider the six H points k = ±bî (i = x, y, z), b = 2π/a, and we call
them H(0) points. They are the smallest wavevectors among the H points in k-space. At these
points the basis functions are formed by the 12 plane waves in free space for the six wavevectors
k = ±bî (i = x, y, z) having two polarizations each. These basis functions are decomposed
into irreps as summarized in Table 1, by using the character table for the irreps of the H point
summarized in Table S3 in Supplement 1. Therefore, the eigenmodes with the lowest frequency
at the H(0) points are decomposed into irreps H1 + H2H3 + H4, where H2 and H3 are degenerate
in the presence of TRS.

Table 1. Eigenmodes with plane waves at the H (0) point. x̂ , ŷ ,
and ẑ denote the unit vectors along x , y , and z directions,

respectively. We put ω = e2π i/3 here.

H1
ψ1

H1
= sin

(︂
2π
a x

)︂
ŷ + sin

(︂
2π
a y

)︂
ẑ + sin

(︂
2π
a z

)︂
x̂

ψ2
H1
= cos

(︂
2π
a y

)︂
x̂ + cos

(︂
2π
a x

)︂
ẑ + cos

(︂
2π
a z

)︂
ŷ

H2
ψ1

H2
= sin

(︂
2π
a x

)︂
ŷ +ω sin

(︂
2π
a y

)︂
ẑ +ω2 sin

(︂
2π
a z

)︂
x̂

ψ2
H2
= cos

(︂
2π
a y

)︂
x̂ +ω cos

(︂
2π
a x

)︂
ẑ +ω2 cos

(︂
2π
a z

)︂
ŷ

H3
ψ1

H3
= sin

(︂
2π
a x

)︂
ŷ +ω2 sin

(︂
2π
a y

)︂
ẑ +ω sin

(︂
2π
a z

)︂
x̂

ψ2
H3
= cos

(︂
2π
a y

)︂
x̂ +ω2 cos

(︂
2π
a x

)︂
ẑ +ω cos

(︂
2π
a z

)︂
ŷ

H4

ψ1
H4
= cos

(︂
2π
a z

)︂
ŷ, ψ2

H4
= cos

(︂
2π
a x

)︂
ẑ

ψ3
H4
= cos

(︂
2π
a y

)︂
x̂, ψ4

H4
= sin

(︂
2π
a z

)︂
x̂

ψ5
H4
= sin

(︂
2π
a y

)︂
ẑ, ψ6

H4
= − sin

(︂
2π
a x

)︂
ŷ

3.2. Representations at the high-symmetry points in the BPI and DG photonic crystals

This result based on the plane waves matches with our numerical calculations for the BPI and the
DG photonic crystals with various values of the dielectric constant ε, as shown in Fig. 3. The
lowest four modes for the vacuum in Fig. 3(a) splits into H1 + H2H3 + H4 in both the BPI and
the DG photonic crystals with increasing the dielectric constants of the dielectrics. In the same
manner, one can classify the irreps for the several lowest frequencies at the high-symmetry points
such as H, P and N. These results are summarized in Table S1 in Supplement 1.

Let us discuss the change of the band structure and the irreps in the BPI photonic crystal, when
the dielectric constant ε in photonic crystal is varied from 1 (Fig. 3(a)) via 4 (Fig. 3(b)) to 11
(Fig. 3(c)). The degeneracies at the high-symmetry points such as H, N and P at ε = 1 are split
into irreps in Table S1 in Supplement 1 when ε is increased. In this case, the irreps of the lowest
bands at high-symmetry points are given by H1, N1, and P3 summarized in Table 2. These irreps
remain the lowest bands even up to ε = 11.

On the other hand, behaviors of the DG photonic crystal are different from that in the BPI
photonic crystal. The DG photonic crystal is shown in Fig. 1(b) whose space group is 230, being

https://doi.org/10.6084/m9.figshare.16574360
https://doi.org/10.6084/m9.figshare.16574360
https://doi.org/10.6084/m9.figshare.16574360
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Table 2. A set of irreducible representations at high-symmetry
points H, N , and P for the lowest bands in BPI and DG

photonic crystals. The numbers in the parenthesis show the
dimensions of the irreps.

high-symmetry point H P N

BPI photonic crystal H1(2) P3(4) N1(2)

DG photonic crystal H2H3(4) P1P2(4) N1(2)

the same as the BPI photonic crystal. The single gyroid surface is given by an isosurface of

g(r) = sin(2πx/a) cos(2πy/a) + sin(2πy/a) cos(2πz/a)
+ sin(2πz/a) cos(2πx/a),

(2)

where a is the lattice constant in the BCC lattice [22], and the DG surfaces are given by isosurfaces
of g(r) and of its counterpart by space inversion, g(−r). We set the dielectric regions as g(r)>λiso
and g(−r)>λiso with λiso = 1.1, shown in blue and red, respectively in Fig. 1(b). From our results
on the band structures when the dielectric constant ε is changed from 1 (Fig. 3(a)) via 4 (Fig. 3(d))
and 9 (Fig. 3(e)) to 16 (Fig. 3(f)), the irreps of the four lowest bands at high-symmetry points
are given by H2H3, N1, and P1P2 which are summarized in Table 2. This set of the irreps are
different from the BPI photonic crystals.

3.3. Photonic waves at the Γ point in photonic bands

We have been focusing on the glide-Z2 invariant for the lowest two bands of this photonic crystal.
Here, although the electromagnetic waves are singular at ω = 0 = |k| as mentioned in Ref. [16],
one can identify their symmetry properties near ω = 0 = |k|, which are needed for calculation
of the Z2 topological invariant. First, the electromagnetic waves in a homogeneous isotropic
medium are written analytically. Then, as remarked in Ref. [16], even in photonic crystals, the
electromagnetic waves near ω = 0 = |k| behave similarly with those in a homogeneous isotropic
medium, because in the longwavelength limit, the spatial variation of the dielectric constants in
the photonic crystal will become irrelevant. In the next subsection, we show how we calculate
the symmetry property of the waves around the singularity at ω = 0 within our theory.

3.4. Glide-Z2 invariant for the photonic crystal

In magnetic glide-symmetric systems, the glide-Z2 topological invariant can be defined, which
characterizes a topological crystalline insulator phase [1–3]. In Ref. [5], the BPI photonic crystal
is proposed to be in the topological phase ensured by this glide-Z2 topological invariant, but a
physical reason why this structure leads to the topological phase is unknown. Here we show this
reason by directly studying the formula of the glide-Z2 topological invariant.

The glide-Z2 topological invariant ν is defined in a crystal with glide symmetry, and its formula
is expressed as a sum of line and surface integrals in k-space [1–3], which is not easy to evaluate
numerically. On the other hand, when inversion symmetry is preserved, like the photonic crystals
of our interest, its formula is drastically simplified, and it is expressed in terms of the irreps at
high-symmetry points [9] in the form of a symmetry-based indicator [23,24]; thus it is much
easier to evaluate. In the space group 230, which our photonic crystals belong to, we obtain a
formula for the glide-Z2 topological invariant ν, associated with a certain band gap, as

(−1)ν =
∏︂

i
ζ+i (Γ)ξi(N)

ξi(H)

ζ+i (H)
, (3)

where the product is taken over the bands below the gap considered, ζ+i is a C2 eigenvalue in the
glide sector with a glide eigenvalue g+ = e−ikz/2, ξi is an inversion parity for the i-th occupied
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state, and the product runs over the bands below the gap considered. The detailed derivation of
this formula is presented in Section S2 in Supplement 1. The value of ν is either ν = 0 or ν = 1,
corresponding to the topologically trivial and nontrivial phases, respectively. The high-symmetry
points in the Brillouin zones for 230 are shown in Fig. 4. We note that from Eq. (3), the irreps at
the P point in 230 do not contribute to the glide-Z2 invariant, as we mentioned in the last part of
the Section 2.

Fig. 4. Upper half of the Brillouin zone of the monoclinic base-centered lattice in 230
(Ia3̄d). Γ, P, H, and N denote the high-symmetry points in SG 230. Here, all the lattice
constants are set to be unity.

Remarkably, in 230, the formula (3) for the Z2 topological invariant is further simplified
drastically, by evaluating Eq. (3) term by term. In this calculation, we focus on the band gap
between the second and third bands, when TRS is broken by applying a magnetic field. First,
the H point has three possible physically irreducible representations, H1, H2H3, and H4, and all
of them yield

∏︁
i
ξi(H)

ζ+i (H)
= 1, by a direct calculation from Table S4 in Supplement 1. Second,

the N point has two possible physically irreducible representations, N1 and N2. Both of them
contributreare to the product in Eq. (3) by a factor

∏︁
i∈Na ξi(N) = −1 (a = 1, 2). Therefore, the

total contribution from the N point is (−1)n/2, where n is the number of bands below the gap
considered. Third, as noted earlier, the eigenmodes with ω = 0 at the Γ point are special in any
photonic crystals because of the transversality condition of the electromagnetic wave, and they do
not follow the ten irreps at the Γ point. Through a direct calculation, we show that it contributes
trivially (i.e. by a factor +1) to the product in Eq. (3). To summarize, the glide-Z2 invariant ν for
230 is calculated as

(−1)ν = (−1)n/2 → ν = n/2 (mod 2). (4)

It means that when the number of bands n below the gap is n = 4m + 2 (m: integer), the photonic
crystal is topologically nontrivial, and when it is n = 4m (m: integer), it is topologically trivial,
provided the gap is open everywhere in the Brillouin zone.

At the P point, there are two possible physically irreps under the TRS, P1P2 and P3, both of
which are four-dimensional. Therefore, when n = 4m + 2 (i.e. ν = 1), there is no gap at the P
point when the TRS is preserved. Therefore we need to open a gap at P by breaking TRS to make
it topologically nontrivial. On the other hand, when n = 4m (i.e. ν = 0), the P point is gapped.
Here, the P1P2 and P3 irreps lead to the doubly degenerate Dirac point, and the generalized
Dirac point, respectively, and in both cases, quad-helicoid surface states are realized on the (001)
surface, thanks to the combination of the two glides and the time-reversal symmetries [25,26],
and another Z2 topological invariant, which we call a helicoid-Z2 invariant, could be defined to
represent nontrivial winding of the helicoid surface states. How the helicoid-Z2 and glide-Z2 are
mutually related is an open question.

Thus far, we have understood how to make the glide-Z2 topological invariant ν nontrivial. To
make the photonic crystal topological, it is important how we break the TRS, i.e. how we introduce
magnetization into dielectrics. Here we introduce two types of magnetizations employed in the
previous works, and we call these types I and II. The type I is realized in the BPI photonic crystal

https://doi.org/10.6084/m9.figshare.16574360
https://doi.org/10.6084/m9.figshare.16574360
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with the two dielectric rods (red and yellow in Fig. 1) having +z magnetization, and the other two
(blue and green in Fig. 1) having −z magnetization, as employed in Ref. [5]. It is classified as the
magnetic space group (MSG) 142.565, whose list is in the Bilbao Crystallographic Server [27].
The type II is the DG photonic crystal with the uniform magnetization along the +z direction
employed in Ref. [6], which belongs to the MSG 142.567. As we have seen in this paper, the
photonic crystal is in the topological phase, if a gap is open between the second and the third
lowest bands. From an argument based on band topology, we conclude that in the type I the
photonic crystal opens a gap between the second and third lowest bands everywhere in k-space,
while in the type II, the photonic crystal does not open a gap. This is explained by extending
the notion of minimal band connectivity M for a nonmagnetic photonic crystal in Ref. [16]
into magnetic photonic crystals, whose details are shown in Section S2 in Supplement 1. This
conclusion fully agrees with the results in Refs. [5,6], saying that the BPI photonic crystal is in a
topological insulator phase ensured by glide symmetry for the gap between the second and the
third bands, while the DG photonic crystal does not open a gap.

We note that in general, some other symmetries apart from glide symmetries can give
topological surface modes. For example, mirror symmetry can give us topological phases
associated with a mirror Chern number, leading to topological surface modes in the gap [28].
Meanwhile, the space group 230, which we study in this paper, contains various symmetries such
as threefold rotations and twofold screw rotations other than glide symmetries, but none of the
other symmetries except for glide symmetries are associated with topological surface modes.
Thus in this space group 230, the band gap topology solely depends on the glide symmetry.

4. Design of topological photonic crystals with glide symmetry

So far we have seen how the topological properties of these photonic bands are understood
in terms of the irreps at high-symmetry points in k-space. In this section, we propose how
topological photonic crystals are designed, based on the representation theory and Wyckoff
positions. In particular, we focus on the BPI and DG photonic crystals as two characterisitic
examples, and how the photonic bands of these photonic crystals result from their structure in
real space. To show this we focus on the irreps at the H point, and as we noted, in the BPI
photonic crystal, the irrep H1 is the lowest, while in the DG photonic crystal, the irreps H2H3 are
the lowest.

4.1. Perturbation theory

As we argued in the previous section, the irreps for the lowest bands at the H point for the BPI
photonic crystal and DG photonic crystal are unchanged by a change of the dielectric constant
from unity to a larger value. We need to see how the level splitting occurs at the H point by
increasing ε. In order to see the level splitting at the H point for a value of ε close to unity, we
can employ the perturbation theory in the dielectric function. When we add a small perturbation
of the dielectric function ε = 1 → ε = 1 + δε(r), the frequency shift δω is given to the first
order in the perturbation δε(r) as follows [29]:

δω = −
ω

2

∫
d3r δε(r)|E(r)|2∫
d3r ε(r)|E(r)|2

. (5)

This relation implies that when the electric field is more concentrated within the dielectrics with
having nonzero δε(r), the frequency shift increases.

We apply this formula to the lowest bands at the H point. To this end we use the 12 plane wave
basis functions at the lowest frequency at the H(0) points, decomposed into a set of eigenstates
following the irreps H1, H2, H3, and H4, as summarized in Table 1. Then, we can calculate the
frequency shift by using Eq. (5), if we know the spatial distribution of δε(r) corresponding to a

https://doi.org/10.6084/m9.figshare.16574360
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photonic crystal. As a result, within the first-order perturbation theory in Eq. (5), one cannot
determine the difference of the frequency shifts for the irreps H1, H2, and H3 in Table 1, because
the distribution of |E|2 in Eq. (5) is identically the same for H1, H2, and H3. Here, the reason
why the degeneracy is not lifted in the first order in δε(r) is because of the high symmetry of the
cubic space group. We expect that in the higher order in the perturbation δε(r), this degeneracy
will be lifted, as required from the space-group symmetry. In order to see how this degeneracy
is lifted, we perform numerical calculations in the next subsection, instead of developing the
higher-order perturbation theory, which is lengthy and complicated.

4.2. Photonic band structures based on Wyckoff positions

So far we have seen that in the present case it is not easy to see relationships between the structure
of the photonic crystal and the band structure in an analytic way. Therefore, we approach this
problem with numerical calculations. Here, we introduce the notion of Wyckoff positions, often
used in the context of electronic systems. In electronic systems, Wyckoff positions classify
spatial locations consistent with a given space group. By putting orbitals with various symmetry
properties at the Wyckoff positions, one can exhaust all the band structures of atomic insulators.
Inspired by this, we adopt the concept of the Wyckoff positions into our theoretical analysis on
photonic crystals.

There are 8 kinds of Wyckoff positions in 230 and their site symmetries are summarized in
Table 3 [7]. Their positions for 16a, 16b and 32e are in Table 4, and other Wyckoff positions
are summarized in Table S5 in Supplement 1. Our objective is to find which Wyckoff positions
correspond to the band structure of the BPI and to that of the DG photonic crystals. To this end,
we numerically calculate the band structure by putting dielectric spheres on a given Wyckoff
position. When dielectric spheres are absent, the light propagates in vacuum whose band structure
is the same in Fig. 3(a), but if the dielectric spheres have a finite radius, the band structure
changes, depending on the positions of the dielectric spheres.

Table 3. Wyckoff positions in 230, their site symmetries, and
the irreducible representations (irreps) for the lowest bands
with ε = 12 at the H point, when dielectric spheres are put at
the specified Wyckoff positions. If more than one bands have
almost the same frequency, they are shown altogether as the

lowest band. Detailed coordinates of each Wyckoff position are
summarized in Table S5 in Supplement 1. The site symmetry 3
for 32e is a subgroup of 3̄ for 16a and 32 for 16b, and the site

symmetry 2 for 48f and 48g is a subgroup of 32 for 16b, 222 for
24c, and 4̄ for 24d .

Wyckoff positions Site symmetry

Irreps for the
lowest band

at the H
point

16a 3̄(C3i) H1, H2H3, H4

16b 32(D3) H2H3

24c 222(D2) H2H3

24d 4̄(S4) H1, H2H3

32e 3(C3) H1

48f 2(C2) H1, H2H3

48g 2(C2) H2H3

First, we put dielectric spheres at the Wyckoff positions labeled 16a, which are located at
(

n1
2 , n2

2 , n3
2 ) and (

n1
2 +

1
4 , n2

2 +
1
4 , n3

2 +
1
4 ) with n1, n2, n3 being integers, according to Table 4. We

here set the dielectric constant of the dielectric spheres to be ε = 16. We set the radius of the

https://doi.org/10.6084/m9.figshare.16574360
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dielectric spheres to be the maximum one, i.e the radius when they touch each other. In this case,
the band structure hardly changes from that for vacuum as seen from Fig. 5(a). Recall that Eq. (5)
implies the degree of concentration of the electric fields in the dielectric regions. Since the
splitting of frequencies among the eigenmodes with H1, H2H3, and H4 in the case of the Wyckoff
position 16a (in Fig. 5(a)) are not conspicuous, the electromagnetic waves in these eigenmodes
are localized on the dielectric spheres at the Wyckoff position 16a to the same degree.

Fig. 5. The photonic band structures at ε = 12 by putting dielectric spheres on the Wyckoff
positions (a) 16a and (b) 16b. (a) Band structure with dielectric spheres with the radius√

3/8 at the Wyckoff position 16a. It is hardly changed from an air band structure of a
body-centered cubic photonic crystal. (b) Band structure with dielectric spheres with the
radius 0.18 at the Wyckoff position 16b, not touching each other. The band structure is
similar to that of the DG photonic crystal. Here we set the lattice constant to be unity.

Table 4. Summary of Wyckoff positions 32e, 16b and 16a in 230. The first column denotes the
multiplicity and the Wyckoff letter, the second column denotes site symmetry, and the coordinates

with two sets (0, 0, 0)+ and ( 1
2 , 1

2 , 1
2 )+. The lattice constant is set to be unity.

32e . 3 . x, x, x x̄ + 1
2 , x̄, x + 1

2 x̄, x + 1
2 , x̄ + 1

2 x + 1
2 , x̄ + 1

2 , x̄

x + 3
4 , x + 1

4 , x̄ + 1
4 x̄ + 3

4 , x̄ + 3
4 , x̄ + 3

4 x + 1
4 , x̄ + 1

4 , x + 3
4 x̄ + 1

4 , x + 3
4 , x + 1

4

x̄, x̄, x̄ x + 1
2 , x, x̄ + 1

2 x, x̄ + 1
2 , x + 1

2 x̄ + 1
2 , x + 1

2 , x

x̄ + 1
4 , x̄ + 3

4 , x + 3
4 x + 1

4 , x + 1
4 , x + 1

4 x̄ + 3
4 , x + 3

4 , x̄ + 1
4 x + 3

4 , x̄ + 1
4 , x̄ + 3

4

16b . 3 2 1
8 , 1

8 , 1
8

3
8 , 7

8 , 5
8

7
8 , 5

8 , 3
8

5
8 , 3

8 , 7
8

7
8 , 7

8 , 7
8

5
8 , 1

8 , 3
8

1
8 , 3

8 , 5
8

3
8 , 5

8 , 1
8

16a . 3̄ . 0, 0, 0 1
2 , 0, 1

2 0, 1
2 , 1

2
1
2 , 1

2 , 0 3
4 , 1

4 , 1
4

3
4 , 3

4 , 3
4

1
4 , 1

4 , 3
4

1
4 , 3

4 , 1
4

In the similar manner, we can calculate the corresponding band structures for dielectric spheres
at other Wyckoff positions in 230, listed in Table 3. As a consequence, we find that dielectric
spheres at the Wyckoff positions labeled by 16b, 24c, and 48g generate band structure, with
H2H3 being the lowest bands at H, similar to that from the DG photonic crystal, and the Wyckoff
position labeled by 32e generates band structure with H1 being the lowest bands at H, similar to
that from the BPI photonic crystal. For the Wyckoff position 24d, the eigenmodes for H1 and
H2H3 are also very close to each other, while they are away from those for H4. The lowest eight
bands at the N point and those at the P point hardly split. For the Wyckoff position 48f , the band
structure hardly changes from vacuum. We skip the most general Wyckoff position 96h, because
no special feature from symmetry is expected. Remarkable cases are depicted in Fig. 5, where
we set the dielectric constant as ε = 12 and the radius of dielectric spheres as r =

√
3/8 for 16a

(Fig. 5(a)) and r = 0.18 for 16b (Fig. 5(b)) with the lattice constant being unity.
Let us compare these results with the BPI and DG photonic crystals in the related previous

works. In the BPI photonic crystals, the dielectric rods lie along the (111), (1̄11), (11̄1), and (111̄)
directions, which corresponds to the Wyckoff position 32e, with changing the free parameter x in
Table 4. Indeed, the photonic crystal with dielectric spheres at the Wyckoff position 32e was
shown to have H1 as the lowest band (see Table 3), similar to the BPI photonic crystal.
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Next we discuss the DG photonic crystal with dielectrics located at g(r)>λiso and g(−r)>λiso
where g(r) is defined in Eq. (2). The isosurface function g(r) has a maximum value 1.5 when
r = (x, y, z) is equal to the Wyckoff position 16b. By changing λiso smaller from λiso = 1.5, the
dielectric regions for the DG photonic crystal broaden from the sites of 16b along 48g toward 24c,
i.e., along the planes perpendicular to the four C3 rotation axes. Indeed, in the band structures for
16b, 48g and 24c, the lowest bands follow the H2H3 irreps, and their band structures are simiar to
that of the DG photonic crystal.

4.3. Design of topological photonic crystals based on Wyckoff positions

We have shown that dielectric spheres located at the Wyckoff position 32e in 230 generates
band structures, similar to the BPI photonic crystal, while those at 16b in 230 generates band
structures similar to the DG photonic crystal. Now we discuss how these two cases are related if
we gradually change the structure of the photonic crystal between the two cases. To this end, we
focus on the Wyckoff positions, 16a and 16b, which are regarded as special cases of the Wyckoff
position 32e by setting x = 0 and x = 1/8, repsectively (see Table 4).

First, we examine band structures for photonic crystals with dielectric spheres both at 16a
and at 16b for various values of their radii. Let ra and rb denote the radii of dielectric spheres
at the Wyckoff positions 16a and 16b, respectively, and we change ra and rb, with keeping the
spheres touching each other, which leads to a constraint ra + rb =

√
3/8. Henceforth, we set the

lattice constant a to be unity. Let us start with ra = rb =
√

3/16. The configuration is depicted
in Fig. 6(a) where the gray cuboid represents a conventional unit cell 0 ≤ x, y, z<1, and the
band structure is shown in Figs. 6(b). The band structure qualitatively agrees with that of the
BPI photonic crystal, having the rods along the Wyckoff position 32e (Fig. 2(b)), because the
structure is similar to that of the BPI photonic crystal with dielectrics at 32e, as can be seen in
from Fig. 6(a). Next, we make the system similar to the photonic crystal with spheres at 16b,
by putting ra =

√
3/48 and rb = 5

√
3/48 depicted in Fig. 6(c). Then the band structure is given

in Fig. 6(d). In this case, the band structure qualitatively agrees with that of the DG photonic
crystal having dielectrics mainly at 16b.

As another example, we also consider photonic crystals with dielectric cylinders, in order to
see how the band structures changes between the two cases. We combine two species of cylinders,
one along 32e and the other centered at 16b with sharing their axes in common, and we consider
the dielectrics located inside the union of these sets of cylinders. We fix the height and radius of
dielectric cylinders at 16b as hb =

√
3/12 and rb = 0.15, and change the radius re of dielectric

cylinders with an infinite height along 32e. In the case of re = 0.1 shown in Fig. 7(a), where the
photonic crystal is almost identical with the BPI photonic crystal, the band structure with TRS
in Fig. 7(b) is similar to that of the BPI photonic crystal, as we intuitively expected, with the
lowest bands identical with those for the BPI photonic crystal in Table 2. On the other hand, in
the photonic crystal with re = 0.02 in Fig. 7(c), where the dielectrics are localized around the
Wyckoff position 16b, the band structure is shown in Fig. 7(d), and is similar to that of the DG
photonic crystal, as listed in Table 2. These results show that by classifying the photonic crystals
in terms of the Wyckoff positions of the dielectrics, one can predict the ordering of irreps at
high-symmetry points (see Table 3). Thus, photonic crystals with dielectrics at various Wyckoff
positions can serve as building blocks to find ones with desired band ordering at high-symmetry
positions, and it can be a way to “design” photonic crystals with desired properties.

Now we discuss universality and limitation of the method of designing topological photonic
crystals based on Wyckoff positions. We consider that our analysis in terms of Wyckoff positions
works well in the perturbative regime discussed in Sec. 4.1, where the dielectric constant of the
dielectrics is close to that of vacuum. Indeed, in the present paper, we show that the ordering
of the irreps of the bands can be predicted from the Wyckoff positions of the dielectrics, as
summarized in Table 3, and it universally holds as long as the dielectric constant is close to that
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Fig. 6. Photonic crystals with dielectric spheres at the Wyckoff positions 16a and 16b and
the corresponding band structures with time-reversal symmetry (TRS). (a) Photonic crystal
with the dielectric spheres with the radius

√
3/16 at the Wyckoff positions 16a and 16b. (b)

The band structure is qualitatively similar to that of the BPI photonic crystal. (c) Photonic
crystal with the dielectric spheres at the Wyckoff position 16b with the radii 5

√
3/48 (blue)

and those at the Wyckoff position 16a with the radii
√

3/48 (red). (d) The band structure is
similar to that of the DG photonic crystal.

Fig. 7. Configurations of photonic crystals with dielectric cylinders and the corresponding
band structures with time-reversal symmetry (TRS). (a) When the dielectric cylinders at the
Wyckoff position 32e are dominant, the band structures in (b) is similar to those of the BPI
photonic crystal. (c) If the dielectric cylinders at the Wyckoff position 16b are dominant, the
band structures in (d) is similar to those of the DG photonic crystal.
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of vacuum. If the dielectric constant of the dielectrics become larger, various bands with different
irreps can be inverted and the band ordering may differ from that in Table 3.

5. Conclusion and discussion

In the present paper, by investigating the relationship between band structures and space group
representations, we study how to manipulate topological photonic crystals ensured by glide
symmetry. In particular, for the BPI photonic crystal without time-reversal symmetry, which is
proposed to realize the glide-Z2 magnetic topological crystalline insulator phase in the previous
paper, we explain the physical reason of the topological phase by using our new formula of the
glide-Z2 invariant in terms of irreducible representations. By comparing band structures and
irreps at high-symmetry points in our numerical calculation, we have also figured out that the
photonic crystal with 230 realizes the glide-Z2 magnetic topological phase only from symmetry
considerations. In such photonic crystal designed in this way, by opening the gap between the
second and third bands by breaking time-reversal symmetry in a staggered way (type I in the
main text), we always obtain the glide-Z2 topological crystalline insulator.

Moreover, because the glide-Z2 topological crystalline insulator phase is automatically the
higher-order topological insulator in the presence of inversion symmetry, such glide-Z2 topological
photonic crystals discussed in this paper are higher-order topological insulators, and one can
expect topological hinge states [3]. Under the glide operation Ĝy : (x, y, z) → (x,−y, z + (c/2)),
the (100) surface preserves glide symmetry and the topological surface states of the glide-Z2
topological phase emerge on this surface (Fig. 8(a)). On the other hand, if one consider a photonic
crystal with an inversion-symmetric shape without glide-symmetric surfaces, the topological
surface states do not appear, while hinge states appear because inversion symmetry is still
preserved (Fig. 8(b)) [17,30,31]. This can be demonstrated by using a simple tight-binding model
in Supplement 1. In electronic systems, it has been proposed that MnBi2nTe3n+1 and EuIn2As2
support gapless surface states ensured by glide symmetry and hinge states ensured by inversion
symmetry [32–34].

Fig. 8. Illustration of (a) the surface states (blue planes) of the glide-Z2 topological
crystalline insulators for system with glide-preserving surfaces, and (b) the hinge states (red
lines) of the higher-order topological insulator ensured by inversion symmetry.

There remain several issues. First, it is generaly difficult to open a common gap throughout
the whole Brillouin zone, because the gap induced by breaking time-reversal symmetry is small
in general. If the dielectric constant in the dielectrics is perturbatively introduced, ε = 1 + δε,
δε ≪ 1, the lowest frequency at the H point is always higher than that at the P point, because the
H-Γ distance is larger than the P-Γ distance in k space. Even when the dielectric constant in the
dielectrics becomes larger, the frequencies of the lowest bands at P and H are different, which
means that a large TRS-breaking term is required to open a large gap.

https://doi.org/10.6084/m9.figshare.16574360
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In this paper, we focused on the topological photonic crystals protected by glide symmetry
by breaking TRS. On the other hand, magnons in a magnet form band structure without TRS,
and it can also be described by the same topological invariant. Therefore, we can use Eq. (3) to
identify the glide-Z2 topological invariant when inversion symmetry is present. As an example,
we can apply our theory to magnons in yttrium iron garnet (YIG), a ferromagnetic material
belonging to the same space group 230. Nonetheless, so far the band structure of YIG has not
been investigated enough for our purpose. According to Ref. [35], the degree of degeneracy
for the lowest bands at the H point in the magnon band structure looks higher than four, which
means that the irreps are not fully resolved, partially because of numerical difficulty due to the
complex lattice structure having many atoms per unit cell. Thus, topological characterization of
magnons in YIG remains a future work.
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