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Topological photonics and acoustics have attracted wide research interest
for their ability to manipulate light and sound at surfaces. The supercell
techniqueis the conventional standard approach used to calculate these

boundary effects, but, as the supercell grows in size, this method requires
increasingly large computational resources. Additionally, it fallsshortin
differentiating the surface states at opposite boundaries and, due to finite-size
effects, frombulk states. Here, to overcome these limitations, we provide

two complementary efficient methods for obtaining the ideal topological
surface states of semi-infinite systems of diverse surface configurations. The
firstis the cyclicreduction method, whichis based oniteratively inverting

the Hamiltonian for a single unit cell, and the other is the transfer matrix
method, which relies on eigenanalysis of a transfer matrix for a pair of unit
cells. Numerical benchmarks, including gyromagnetic photonic crystals,

valley photonic crystals, spin-Hall acoustic crystals and quadrupole photonic
crystals, jointly show that both methods can effectively sort out the boundary
modes via the surface density of states, at reduced computational cost and

increased speed. Our computational schemes enable direct comparisons with

near-field scanning measurements, thereby expediting the exploration of
topological artificial materials and the design of topological devices.

Topological photonicand acoustic crystals have emerged as versatile
platforms for exploring topological physics and have thus attracted
considerableinterestin recentyears'®. One of their remarkable features
is that their surface states are robust against defects and disorder,
whichbrings the potential to realize useful devices such as waveguides,
antennas, splitters, isolators and lasers’ . To study surface effects,
calculating the band structure of a supercell (a finite-sized slab) has
always been the method of choice, but it has several drawbacks. One
problemisthatitis hard to distinguish the surface states on both sides
of the slab unless the eigenfunctions are calculated and examined'®.
Anotherissueis that the slab thickness should be large enough to avoid
spurious coupling between the surface states at the two boundaries,

leading to substantial consumption of computational resources”. Most
importantly, the surface bands are mixed with the bulk bands, and the
results cannot be directly compared with a surface state spectrum
measured in near-field scanning experiments’®.

The key to solving these problems is the surface Green’s function
for a semi-infinite system. From this one can derive surface properties
such as the surface density state spectrum at a single well-defined
boundary. Mathematically, the surface Green’s function can be evalu-
ated as the inverse of a Hamiltonian with a block-Toeplitz tridiagonal
structure”. General direct solvers such as lower-upper and Cholesky
factorization scale poorly with increasing system size?’. Fortunately,
certain algorithms” can substantially enhance the computational
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efficiency if the Toeplitz property is fully considered. These primar-
ily fall into two categories. One category comprises iterative tech-
niques, such as the cyclic reduction method (CRM)?, and the other
semi-analytical techniques such as the transfer matrix method (TMM)>.
Historically, Golub and Hockney first proposed the CRM for the rapid
calculation of theinverse of a scalar-cyclic operator when solving Pois-
son equations® . It was then extended to deal with block-cyclic”’ and
semi-infinite?” systems. Simultaneously, Lee and Joannopoulos put for-
ward a TMM for efficiently inverting the Hamiltonian for Schrodinger
equations in semi-infinite systems?, which is similar to the core idea
of the subsequently developed Mobius transformation method?.
Recently, Colbrook and colleagues proposed another method to rig-
orously compute the surface spectra of semi-infinite systems by using
rectangular truncations that preserve all couplings between the trun-
cated finite region and the remaining infinite bulk*°.

These mathematical advances have beensuccessfully transferred
tostudiesinelectronic systems. Forexample, CRMs in plane-wave and
tight-binding bases have been used to calculate the electronic transmis-
sion of carbon nanotubes and semiconductors'*". Meanwhile, TMMs
based ontight-binding models have been used toinvestigate the decay
of surface states in graphenes®*** and to image the surface bands of
superconductors and topological insulators'®**. So far, these methods
have beenwidely used to analyze and design the surface properties of
electronic materials®*” and have been developed as a powerful tool
for exploring novel topological phenomena®®.

In photonic and acoustic systems, however, the mathemati-
cal advances have not been fully exploited. Although a CRM in a
finite-element basis hasbeen proposed to calculate the surface states of
photonicandacoustic topological semimetals®*°, the formulation s lim-
ited to the case of abare semi-infinite structure. Meanwhile,a TMM based
onaplane-wave basis hasbeen presented to simulate the wave propaga-
tion in more complex cases such as sandwiched photonic crystals**?,
butwith such non-localized basis functionsitis hard to describe optical
fields in metallic materials and sound waves in rigid bodies.

In this Article, to address the above limitations, we implement
the CRM and TMM using finite-element discretizationin photonic and
acoustic systems and provide computational paradigms across a vari-
ety of scenarios, including a bare semi-infinite crystal, a semi-infinite
crystal with a surface defect, two semi-infinite crystalsinterfaced with
each other, and two semi-infinite crystals with aninterface defect. We
demonstrate the utility of our approach by calculating the surface state
spectra of gyromagnetic photonic crystals, valley photonic crystals,
spin-Hallacoustic crystals and the corner state spectra of quadrupole
photonic crystals, and compare the differences in the computational
efficiency and accuracy of the two methods.

Results

Green'’s functions and local density of states

Green'’s functions in photonic (equation (1a)) and acoustic (equation
(1b)) systems can be defined as the solutions of the wave equations for
apointsource:

[VXxpu-1(r) - Vx—w2e)]G(r,r';0) =I16(r —t') (1a)
Z(r;0)
[V-p 1)V + 02K 1(r)] G (r,¥';0) = 6(r — 1) (1b)

Z(r;0)

where u(r), £(r), p(r) and K(r) are the permeability, permittivity, mass
density and bulk modulus at location r, respectively. / is a
three-component unit tensor and 6(r — r’) is the Dirac’s delta source
atr’. For simplicity, we write the above equations as ZG =/, where Z
combines the differential operators and material parameters, and Gis
Green’s function.

Thelocal density of states (LDOS) describes the spatial distribution
of the intensity of a single-particle eigenstate, and can be calculated

from the imaginary part of G (in equations (1a) and (1b)) by imposing
aninfinitesimal imaginary frequency 7 (refs. 43-45):

LDOS (r; w) = 2?wlm {Tr [s(r) Iir(r)1 G(r,r;w+ iq)” (2a)
n—0+

LDOS (r; w) = 2%ulm [K—l(r) qlir(r)l_ G(r,r0+ ir])] (2b)
Here, equations (2a) and (2b) are the computational expressions for
photonicand acoustic systems, respectively. Trin equation (2a) signi-
fiestracing Green’s tensor, asitis necessary to consider all polarization
degrees of freedom in a photonic system.

Because this work mainly focuses on the topological states local-
ized at system boundaries, in the following calculations and analyses
we define the surface density of states (SDOS) as the average of the
LDOS over the surface layer, unless indicated otherwise.

Mathematical origin

Mathematically, our goalis to efficiently find the corner block inverse
of operator Zin equations (1a) and (1b), and to obtain the SDOS using
equations (2a) and (2b). When the system exhibits semi-infinite crystal
periodicity (as shown in Fig. 1a) and each crystal layer is discretized
identically in the finite-element method*’, the operator transforms
into the following form:

Zo, Zoa
Z=| 210 Zoo 2o, (3)

whichis knownas the block-Toeplitz (block-cyclic) tridiagonal matrix®.
Here, diagonalblock Z,, , is the intra-coupling within the mth layer, and
the off-diagonal block Z,, ,,.1/Z,..1,mis the inter-coupling between neigh-
boringlayers; these can be expressed as Z, ,and Z, ,/Z, o, respectively.
Allthese blocks are functions of momenta, considering the periodicity
inthe closed direction (along the surface).

The CRM and TMM are powerful algorithms for inverting the
structured matrix in equation (3). The CRM is based on iteratively
inverting an effective coupling matrix for the surface layer, whereas
the TMM relies on the eigenanalysis of the transfer matrix for a pair
of neighboring layers. The methods deal only with matrices that are
the same size or twice the size of Z,, rather than the entire matrix Z,
substantially reducing the computational resources required.

This work aims to demonstrate the applicability of these methods
to complex photonic andacoustic structures such asthose inFig. 1a-d,
corresponding to equations (3) to (6), as well as their advantages in
conveniently investigating novel topological surface states for direct
experimental comparisons:

“

®)

521,0 Zoo Zo,
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Fig. 1| Various photonic or acoustic crystal structures that support
topological surface states. The structure is divided into layers along the
direction perpendicular to the surface indicated by index m. Z,, , is the
intra-coupling matrix within asingle layer, and Z,, ,,,, and Z,,,, ,, are the inter-
coupling matrices between two nearest-neighbor layers. Z represents the
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coupling matrix in the opposite direction. a, A bare semi-infinite crystal
terminated by a perfect electric conductor (PEC)/hard wall. b, A semi-infinite
coated crystal terminated by a PEC/hard wall. ¢, Two different semi-infinite
crystals interfaced with each other. d, Two different semi-infinite crystals
separated by another crystal slab.

Zip Z11 Loy
Zip Z11: 2101

Z01:Z00: Zo, (6)
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Cyclicreduction method

Here weintroduce the CRMin the context of photonics and acoustics.
First, let us consider a simple case—a general semi-infinite crystal—as
shownin Fig. 1a. To solve for the surface Green’s function G, ,, we now
expand equations (1a) and (1b) inablock manneraccording to equation
(3), which gives a series of chain equations:

—=00Gm,0 = ®oGmi1,0 + BoGm-10, M2 1, (7a)
—{4Goo = apGro —1 (7b)
where
ao =Zo1, Bo = 21,0, {0 = Zo,0 (8a)
& =200 (8b)

The superscript s here is used to denote surface quantities. Next, we
remove the odd-layer Green'’s functions repeatedly using Gaussian
elimination, and equations (7a,7b) and (8a,8b) are transformed into
the following forms after i iterations:

—(iGaimo = 4;Gaigme1),0 + BiGaigm—1),0, M 2 1, (9a)
—Z?Go’o = aiczi,o -/ (9b)
where
@ = @y (o) iy,
Bi = Bia@G)” Bi-r, (102)
G = o= @G By — Bia(@y) iy,
G=G.,- 41(Ge) " B (10b)

Here, equations (9a,9b) and (10a,10b) define an effective eigenma-
trix that builds connections between the layers at intervals of 2", As
the iterations proceed, the distance between those layers increases
exponentially, and the corresponding inter-couplings (a; and ;)
decay exponentially to zero due to the inclusion of a global loss (7 in
equations (2a,2b)).

Finally, the surface Green’s function G, , decouples with the bulk
one Gy o in equation (9b), and we achieve its approximation:

Goo = lim (&) an

oo Nt

This, in turn, allows for the derivation of the SDOS through
equations (2a,2b).

Aside from the bare semi-infinite scenario described above, the
CRM canalso handle other more complicated situations, suchas (line
defects between) heterostructures, as shown in Fig. 1b—d. Their asso-
ciated pseudo-codes are provided in the Supplementary section 1
(Supplementary algorithms 2-4).
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Transfer matrix method

Complementary to the CRM, we can use the TMM to derive the SDOS.
This has higheraccuracy, but at the cost of computational speed. Here
we also choose a bare semi-infinite structure as an example. First, we
relate the Green’s functions of each layer by introducing a transfer
matrix T, which also corresponds to equations (7a,7b):

Gm+1,0 Gl,o
=T ,mx1, (12a)
Gm,O Go,o
—Z0,0G0,0 = Z01G1,0 — 1 (12b)
with
~Z51%00 ~Zo1210
T= ’ ’ (13)
I 0
Next, we rewrite equation (12a) in the following form:
Gm+1,0 Gl 0
=SsAm|s1 (14)
Gm,O GO,O

where A is a diagonal matrix and S is a full matrix consisting of all the
eigenvalues and eigenvectors of T, respectively:

7S =SA (15)

On analyzing equation (14), it becomes imperative to eliminate
the eigenvalues of A with moduli greater than1to avoid divergencein
the Green’s functions (4™ = »). Consequently, the term enclosed within
the square brackets must satisfy the following condition:

Gio C
s U=
GO,O 0
where Cis a constant matrix, O is a zero matrix, and their positions
correspond to those of eigenvalues with moduliless than1and greater

thanlinA, respectively.Scanthenalsobearranged as a partition matrix
corresponding to the same eigenvalue distributionin A:

Sy S,
S=
S Ss

Substituting equation (17) into equation (16), we have a relationship
between the surface Green’s function G, , and the bulk one G, o:

(o))~ (5c)

= GI,O = 5251_160,0

(16)

17)

(18)

Finally, combining equation (18) with equation (12b), we obtain
anexplicit expression for the surface Green’s function:
-1

Go,o = (Zo,0 +2015:5,") (19)

The SDOS for the semi-infinite system can be accordingly derived via
equations (2a) and (2b).

One potential difficulty may arise when the inverse of the

inter-coupling matrix Z,, in equation (13) does not exist. To

overcome the problem, one can decompose the transfer matrixin the
following way:

0o I\'/ 1 O
T=T1T,=
~Zo1 0 Zo,0 Z10

and transform the standard eigenvalue problem (equation (15)) intoa
generalized eigenvalue problem to find the eigensolutions of T (ref. 47).

The detailed pseudo-codes for using the TMM to handle other
complexstructures, asshowninFig.1b—-d, are summarized in Supple-
mentary section 1(Supplementary algorithms 6to 8).

(20)

Numerical examples

To showcase the applicability of the CRM and TMM in different com-
plex scenarios, we selected four representative photonic structures
(Fig. 2a,d,g,j) for verification, which correspond to the four cases
illustrated in Fig. 1a—d. A further three structures are also studied to
demonstrate that the developed methodology is equally effective
for (1) semi-infinite material/media boundaries (Fig. 3a); (2) acoustic
systems (Fig. 3d); and (3) higher-order topological systems (Fig. 3g).
For all of these seven examples, we assume continuous translational
invariance along the zdirection with wavevector component k,=0,and
introduce the sameimaginary frequency 7= /1,000 into the original
Hermitian systems for proper broadening of the SDOS. Details of these
examples are provided in the Methods.

From the results presented in Figs. 2 and 3, it is evident that effi-
cient calculation of the SDOS offers three distinct advantages that
complement surface band calculations. First, in the SDOS spectra,
the bulk states become genuinely continuous, while the surface states
remain discrete, allowing for a clear visualization of the evolution of the
surface states, and, in particular, their behaviors within the continuum
in frequency-momentum space. Second, the topological states of a
single well-defined surface can be obtained directly from the SDOS,
mitigating the need to inspect theindividual wavefunctions of surface
bandstosort outlocalization on different surfaces. Third, the efficient
calculation of SDOS spectra has an experimental advantage: they can
be directly compared with observables in near-field scanning experi-
ments in both photonics and acoustics.

Computing accuracy and efficiency
Both the CRM and TMM can effectively obtain the surface Green’s
function due to the block-cyclic tridiagonal form of matrix Zin such
periodic systems. In the following, we will evaluate and compare the
strengths and weaknesses of the CRM and TMM, particularly in terms
of computing accuracy and efficiency.

In terms of computational accuracy, the TMM provides higher
precisionthanthe CRM. Asthe TMM directly provides anexact expres-
sion for the surface Green’s function (equation (19)), its results are more
accurate than those of the iterative approach used by the CRM (equa-
tion (11)). To illustrate this, we take a one-dimensional (1D) photonic
crystalwithinversion symmetry*® asan example to analyze the accuracy
and convergence of the CRM, TMM and conventional supercell method
(SCM) (Fig. 4). However, it is important to note that the introduction
ofimaginary frequency n may lead to singularities in the system (such
as exceptional points). In this case, Tbecomes ill-conditioned, which
couldresultincatastrophicround-offerror amplification, especially at
the edges of the energy bands. One possible approachis to reconstruct
the relationship between the Green’s functions and LDOS (equations
(2a,2b)) at exceptional points*’ so that the aforementioned efficient
algorithms can be utilized as usual.

In terms of computational memory, the CRM is more advanta-
geous than the TMM. The TMM’s memory consumption primarily
comes from the eigenanalysis of matrix 7, whereas that of the CRM
originates from inverting the self-coupling matrix . Notably, T has
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Fig. 2| Topological surface states of representative surface configurations in
photonic crystals. a-1, Topological surface states of a PEC domain wall (a-c),
PEC sandwich (d-f), crystal domain wall (g-i) and crystal sandwich (j-1).

a, Normalized mode profile £, (electric field) of a gyromagnetic photonic crystal
terminated by a PEC at anormalized frequency of 0.64c/a, corresponding to the
eigenfrequency circled inred in b.b, Band structure of a12-cell gyromagnetic
photonic crystal slab with two PEC boundaries. ¢, SDOS spectrum of a semi-
infinite gyromagnetic photonic crystal witha PEC boundary. d, Normalized
mode profile £, of agyromagnetic photonic crystal coated with a crystal slab and
terminated by a PEC at anormalized frequency of 0.61c/a, corresponding to the
eigenfrequency circledinredin e. e, Band structure of a13-cell gyromagnetic
photonic crystal slab with two PEC boundaries. f, SDOS spectrum of a semi-

-T/a 0 /a

k k

X X

infinite gyromagnetic photonic crystal witha PEC boundary. g, Normalized
mode profile H, (magnetic field) of a valley photonic crystal formed by two semi-
infinite crystals face to face at anormalized frequency of 0.45c/a, corresponding
to the eigenfrequency circled inred in h. h, Band structure of a 24-cell valley
photonic crystal slab with two PEC boundaries. i, SDOS spectrum of a valley
photonic crystal extending infinitely on both sides. j, Normalized mode profile
H,of avalley photonic crystal formed by two semi-infinite crystals separated by
another crystal slab at anormalized frequency of 0.26¢/a, corresponding to the
eigenfrequency circled inred in k. k, Band structure of a 25-cell valley photonic
crystal slab with two PEC boundaries. l, SDOS spectrum of a valley photonic
crystal extending infinitely on both sides.

twice the degrees of freedom as ¢ (equations (8b) and (13)), leading
to larger memory usage in the TMM. As shownin Table 1, for the same
degrees of freedom, the TMM’s memory consumptionis approximately
four times that of the CRM.

In terms of computation time, the CRM is again more advanta-
geous. First, similar to the principle of memory consumption, the time
consumption of the TMM primarily stems from the eigenanalysis of
matrix 7, whereas that of the CRM mainly comes from the inversion of
the coupling matrix . As Thas twice the degrees of freedom as {*, the
time consumption of the TMM is greater. Second, although the time

complexities for both the eigenanalysis and inversion of equivalent
matrices are O(N?), the proportionality constant for eigenanalysis is
larger, leading to alonger computation time for the TMM. Table 1also
presents the computation time required for both methods, showing
that the TMM takes substantially longer than the CRM for the same
number of degrees of freedom. It should be noted that the CRM time
inTable1also hastotakeintoaccountthe number of iterations. Select-
ing an appropriate imaginary frequency n can effectively reduce the
iterations, but at the expense of decreased computational accuracy,
asdiscussedinref.40.
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anormalized frequency of 0.59¢/a, corresponding to the eigenfrequency circled
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interface. b, SDOS for a topological state (at the normalized frequency of 0.2425)
obtained from different methods. The imaginary frequency is taken as n = /100
for finite line broadening. The number of iterations i in the CRM and the number
of unitcells/(ononeside) inthe SCM are both set to 2, and the unknown Nin

0.25 1 2 3 4 5
Iterations i/no. of cells [

aunitcellis-2,000. It can be observed that the accuracy of the TMM is higher
than that of the CRM, and both are superior to the SCM. ¢, Convergence of the
different methods. The errors are defined as (SDOS; - SDOS,_,)/SDOS.. for the
CRMand (SDOS, - SDOS,,)/SDOS..for the SCM. It can be seen that the error
decreases exponentially for the CRM and linearly for the SCM, indicating that the
CRM has better convergence.
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Table 1| A comparison of the three methods in terms of
memory costs, given by complexities O[N?], O[(2N)?] and
OI[(IN)?*], and time costs, given by complexities O[N],
OI[(2N)’], OL(IN)*]

Unit cell 500 1,000 1,500 2,000
unknowns (N)

Memory for 3.82 15.29 34.4 61.16
CRM (Mb)

Memory for 15.23 61.04 139.25 244.36
TMM (Mb)

Memory for 309.43 1,238.22 2,785.78 4,953.98
SCM (Mb)

Time for CRM (s) 0.006x4 0.036x4 0.11x4 0.26x4
Time for TMM (s) 0.63 5.02 18.27 45.83
Time for SCM (s) 2.34 21.31 69.94 167.71

The performance tests were conducted in MATLAB on an Intel Core i7-12700 CPU (12 cores,
20 threads). The CRM required four iterations, and the SCM utilized nine unit cells, achieving
a convergence error of 1x10™ when n=w/100.

It is worth summarizing the respective advantages of the CRM
and TMM together with those of the widely used SCM. The CRM is
most efficientin terms of time and memory consumption. Meanwhile,
although the SCM has slower convergence and thus requires more sub-
stantial computational resources, it can directly access the eigenmode
profiles (asshowninFigs.2a,d,g,jand 3a,d,g, calculated with the SCM).
Despite the fact that the TMM consumes more time and memory when
calculating surface Green’s functions than the CRM, it does, however,
offers certain other advantages. For example, the intermediate vari-
ables (eigenvalues A and eigenvectors S) can be used to construct the
surface bands (the surface eigenvalues spectrum®).

Discussions

Inthis Article, we have applied two efficient algorithms for calculation
of the SDOS in photonic and acoustic crystals, and have investigated
the corresponding topological phenomena. The CRM focuses on effi-
ciently solving the SDOS by reducing the computational complexity
using Gaussian elimination, whereas the TMM relies on directly solving
itthrough eigenanalysis of a transfer matrix. We have provided numeri-
cal examples of various topological photonic and acoustic crystals to
demonstrate the utility of these methods.

The key innovation of our work lies in employing finite-
element-type localized basis functions to discretize wavefunctionsin
continuous optical and acoustic systems, amethodology conceptually
analogous to tight-binding theory using localized atomic orbitals for
electrons. Compared to traditional plane-wave expansion methods
that rely on global basis functions, our approach offers several dis-
tinct advantages. First, it enables the precise modeling of arbitrarily
complex geometries, such as multiscale structures, through localized
mesh refinement, whereas plane-wave methods require prohibitively
high expansion orders to achieve comparable accuracy. Second, it
effectively handles material systems containing metals or rigid bodies,
addressing field discontinuities that challenge the numerical stability
of plane-wave expansions. It also naturally accommodates in-plane
non-periodic systems, such as finite structures with a PEC or absorbing
boundaries, without relying on the reciprocallattice vectors essential
to plane-wave techniques. Withgeometric flexibility, material versatil-
ity and non-periodicity compatibility, our computational framework
provides arobust solution for photonic and acoustic systems beyond
the constraints of conventional methods. Our method can also be
extended to other complexsystems, including finite-sized structures,
non-uniform interfaces, nonplanar geometries, moiré superlattices
and non-Hermitian systems (Supplementary Fig. 1). More detailed
informationis provided in Supplementary section 2.

The finite-element-based CRM and TMM developed in this
work provide substantial improvements over conventional super-
cell approaches in both computational efficiency and result quality.
Computationally, the CRM achieves O[N°] complexity by inverting
the self-coupling matrix of asingle unit cell, whereas the TMMreaches
O[(2N)*] complexity through eigenvalue analysis of adoubled unit cell.
Both methods offer substantial computational savings compared to
supercellmethods, which scale as O[(IN)?] (with > 2 denoting supercell
size). Physically, these methods directly handle semi-infinite systems,
allowing explicit extraction of surface-specific properties such as
SDOS spectra. In contrast, supercell approaches model a finite-sized
structure with two surfaces, requiring careful examination of the
eigenmodes to exclude states localized at the opposing boundary.
Traditional boundary treatments such as perfectly matched layers
face challenges because the surface waves are non-radiated and hard to
absorb, necessitating specialized techniques such as complex nonlin-
ear coordinate transformations® and adiabatic absorbers*’ to address
the problems in periodic systems. Furthermore, because our SDOS
spectrum retains intensity information, it enables a clear distinction
between surface states and bulk continua and facilitates direct tracking
of momentum-space evolution for surface states, thereby ensuring
quantitative alignment with near-field scanning experimental data.

Our methods maystill face challenges in ultra-large-scale simula-
tions, especially for unit cells with millions of degrees of freedom, as
inmoiré superlattices with small twist angles. In such cases, although
our methods can still reduce computational cost, matrix inversion
and diagonalization could still consume considerable resources. A
useful future directionis parallelization. In our formulation, each SDOS
data pointis independent in frequency-momentum space, enabling
straightforward task decomposition across central processing units or
nodes. Moreover, graphics processing unit architectures can also be
very well-suited to this problem due to their massive parallelism and
high memory bandwidth, which may offer further speed-ups.

Methods

Simulation environment

All simulations in this study including performance benchmarks and
numerical examples, were conducted using COMSOL Multiphysics
withaMATLAB scriptinginterface. It should be noted that the COMSOL
in this work is primarily used for mesh generation, which can also be
performed by other open-source finite-element meshing tools. The
workflow begins by constructing asupercell structure inthe COMSOL
modeling environment and extracting its finite-sized eigenmatrix Z
through MATLAB for traditional SCM validation. This matrix is then
partitioned into diagonal self-coupling and off-diagonal inter-coupling
submatrices to implement both the CRM and TMM. All performance
metrics (computational time, accuracy, memory usage) are thus
evaluated under identical model conditions—including consistent
geometries and meshing schemes—to ensure rigorous and unbiased
comparison of the methods.

CRM and TMM for coated, hetero- and sandwiched structures
Inaddition to the methods for bare semi-infinite structures presented
in the main text, we extend our analysis to complex configurations.
Here we demonstrate this extension through the case of sandwiched
structures (Fig. 1d), with the following discussion providing compre-
hensive methodological details.

In the CRM (Supplementary algorithm 4), we define a,, 8, and {,
as the bulk couplings of a crystal on one side, and a,, B, and {; as the
bulk couplings onthe other side. We also take a3, 55, &, /?;and ¢ asthe
interface couplings for the sandwiched crystal slab. Here, the overline
superscript s denotes quantities in the opposite direction and at the
interface, respectively, and subscriptiindicatesiteration steps. We can
thenindependently iterate the bulk couplingsin both directions, and
update theinterface couplings accordingto those of the bulk. Finally,
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the surface Green’s function can be found through Cif the convergence
residual (¢ - &_)/(C_))issmallenough.

Inthe TMM (Supplementary algorithm 8), we define T, T,and T;,
T,asthetransfer matrices of crystals on two sides. We can then perform
generalized eigenanalyses of the two pairs of transfer matrices inde-
pendently. By ordering the corresponding eigenvalues and eigenvec-
tors, and combining this with the equation of Green’s function at the
interface, we can also find the exact solution of the surface
Green’s function.

Details of numerical examples

The first example is a 2D gyromagnetic photonic crystal with a PEC
cladding, which exhibits topological surface states in the second band-
gap. Figure 2a presents aschematic of the structure, where the radii of
thedielectric pillars are 0.13a, the relative permittivity €,is13 and rela-

1 -04i0
tive permeability p, is ( 04i 1 O ) We calculate the surface band
0 0 1

structure fora12-cell crystal slab and the SDOS for a bare semi-infinite
crystal, as shown in Fig. 2b,c, respectively. It can be clearly seen that
the surface states become more pronounced against the bulk states,
and only the chiral state on a single surface is retained in the
SDOS spectrum.

Our second exampleis again a2D gyromagnetic photonic crystal,
but with a surface modification and a PEC cladding, which features
topological slow light in the second bandgap. Figure 2d presents a
schematic of the structure, where the radii of the dielectric pillars are

0.83 -0.42i 0
0.15a, and therelative permeability u,is| 0.42i 0.83 0 ). Therelative
0 0 1

permittivity of the surface pillars varies periodically along the x direc-
tionin asequence of €, = {15, 15, 25}, whereas that of the bulk pillars is
uniform at €, =15. The surface band structure for a 13-cell crystal slab
and the SDOS for a semi-infinite coated crystal are calculated and
showninFig. 2e,f, respectively. It can be observed that only topological
states with negative group velocities are presentin the SDOS spectrum,
and they exhibit minimal group velocities at the Brillouin
zoneboundary.

The third example is a 2D valley photonic crystal heterostruc-
ture, which supports valley-dependent surface states in the second
bandgap®’. Figure 2g provides a schematic of the structure, which is
composed of two types of dielectric pillar with opposite orientations.
The pillar has a side length of 0.615a and a chamfer length of 0.11a at
the corner, with arelative permittivity €, of 13 and permeability i, of 1.
We calculate the surface band structure for a 24-cell crystal slab and
the SDOS for a heterostructure infinitely extending into both bulks,
as shown in Fig. 2h,i, respectively. It becomes apparent that a pair of
topological states with opposite group velocities are locked in different
valleysin the SDOS spectrum.

The fourthexampleis again a valley photonic crystal heterostruc-
ture, but withaline defect sandwiched at the interface, which supports
valley-dependent slow light in the first bandgap®*. Figure 2j shows a
schematic of the structure, which consists of three types of dielectric
crystal slab. The crystals have a background material relative permit-
tivity &, of 11.56 and permeability g, of 1, with the long and short sides
ofthe air pillars being 1.3a/v/3 and 0.7a/+/3. The surface band structure
for a 25-cell crystal slab and the SDOS for a sandwiched structure
extending infinitely in both directions are calculated and shown in
Fig. 2k I, respectively. It can be intuitively observed that only the con-
fined modes of the interface exist in the SDOS spectrum, and it shows
slow group velocities near the Brillouin zone edge.

Thefifthexampleisa2D gyromagnetic photonic crystal exposed
to air, which has topological surface states in the first bandgap®.
Figure 3a presents a schematic of the structure, and the radii of the
dielectric pillars are 0.2a, with relative permittivity €, of 15.26 and

0.80 -0.72i 0
permeability g, of [ 0.72i 0.80 0 |.We calculate the surface band
0 0 1

structure fora12-cell crystal slab and the SDOS for a bare semi-infinite
crystalinterfaced withair, asshowninFig.3b,c, respectively. It isnoted
that only the state of the air-crystal interface remains in the SDOS
spectrum. Moreover, information absent in the surface band calcula-
tion canbe found inthe SDOS spectrum—when the topological surface
band enters the light cone, it couples to the radiation continuum (in
thex-yplane), resultingin their hybridization and blurring of the SDOS
of the surface band.

The sixth example is a 2D spin-Hall acoustic crystal, which has
pseudospin-dependent topological surface states in the second
bandgap®. Figure 3d presents a schematic of the structure, and the
radii of the rigid bodies on the two sides are 0.3a and 0.45a. We cal-
culate the surface band structure for a 24-cell crystal slab and the
SDOS for a structure extending infinitely on both sides, as shown in
Fig.3e,f, respectively. It canbe seen fromthe SDOS spectrumthat two
pseudospin-locked counterpropagating acoustic modes are equally
excited at the sameinterface.

Thelastexampleis a2D gyromagnetic photonic crystal that sup-
ports quadrupole corner states. Figure 3g presents aschematic of the
photonic crystal structure, as discussed inref. 57. The dielectric pillars
have aside length of 0.17a, with arelative permittivity €, of 15and per-

14 -124i 0
meabilityp,0f<12.4i 14 0).The structure extends infinitely along
0 0 1

the primitive vectors a and b but is terminated by the PEC along the
a + b direction. By redefining finite-sized supercells along this
finite-sized direction as effective unit cells (inside the dashed lines in
Fig.3g), we can apply the algorithms designed for asandwiched struc-
ture to calculate the SDOS and further derive the corner DOS. We cal-
culate the corner eigenvalue spectrum for 10 x 10 unit cells and the
corner DOS for the bi-semi-infinite structure, which are shown in
Fig.3h,i, respectively. The corner state can be clearly observed within
abandgap in the corner DOS spectrum, which aligns well with the
eigenvalue spectrum.

Data availability
All data in this study were generated by running our codes (ref. 58).
Source data are provided with this paper.

Code availability
Source codes associated with thismanuscript are available on Zenodo
(ref. 58) and via GitHub at https://github.com/YixinSha/SDOS.
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