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Efficient algorithms for the surface density  
of states in topological photonic and 
acoustic systems
 

Yi-Xin Sha    1,2  , Ming-Yao Xia    3, Ling Lu    4 & Yi Yang    1,2 

Topological photonics and acoustics have attracted wide research interest 
for their ability to manipulate light and sound at surfaces. The supercell 
technique is the conventional standard approach used to calculate these 
boundary effects, but, as the supercell grows in size, this method requires 
increasingly large computational resources. Additionally, it falls short in 
differentiating the surface states at opposite boundaries and, due to finite-size 
effects, from bulk states. Here, to overcome these limitations, we provide 
two complementary efficient methods for obtaining the ideal topological 
surface states of semi-infinite systems of diverse surface configurations. The 
first is the cyclic reduction method, which is based on iteratively inverting 
the Hamiltonian for a single unit cell, and the other is the transfer matrix 
method, which relies on eigenanalysis of a transfer matrix for a pair of unit 
cells. Numerical benchmarks, including gyromagnetic photonic crystals, 
valley photonic crystals, spin-Hall acoustic crystals and quadrupole photonic 
crystals, jointly show that both methods can effectively sort out the boundary 
modes via the surface density of states, at reduced computational cost and 
increased speed. Our computational schemes enable direct comparisons with 
near-field scanning measurements, thereby expediting the exploration of 
topological artificial materials and the design of topological devices.

Topological photonic and acoustic crystals have emerged as versatile 
platforms for exploring topological physics and have thus attracted 
considerable interest in recent years1–8. One of their remarkable features 
is that their surface states are robust against defects and disorder, 
which brings the potential to realize useful devices such as waveguides, 
antennas, splitters, isolators and lasers9–15. To study surface effects, 
calculating the band structure of a supercell (a finite-sized slab) has 
always been the method of choice, but it has several drawbacks. One 
problem is that it is hard to distinguish the surface states on both sides 
of the slab unless the eigenfunctions are calculated and examined16. 
Another issue is that the slab thickness should be large enough to avoid 
spurious coupling between the surface states at the two boundaries, 

leading to substantial consumption of computational resources17. Most 
importantly, the surface bands are mixed with the bulk bands, and the 
results cannot be directly compared with a surface state spectrum 
measured in near-field scanning experiments18.

The key to solving these problems is the surface Green’s function 
for a semi-infinite system. From this one can derive surface properties 
such as the surface density state spectrum at a single well-defined 
boundary. Mathematically, the surface Green’s function can be evalu-
ated as the inverse of a Hamiltonian with a block-Toeplitz tridiagonal 
structure19. General direct solvers such as lower–upper and Cholesky 
factorization scale poorly with increasing system size20. Fortunately, 
certain algorithms21 can substantially enhance the computational 
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from the imaginary part of G (in equations (1a) and (1b)) by imposing 
an infinitesimal imaginary frequency η (refs. 43–45):

LDOS (r;ω) = 2ω
π Im {Tr [ε (r) lim

η→0+
G (r, r;ω + iη)]} (2a)

LDOS (r;ω) = 2ω
π Im [K−1(r) lim

η→0−
G (r, r;ω + iη)] (2b)

Here, equations (2a) and (2b) are the computational expressions for 
photonic and acoustic systems, respectively. Tr in equation (2a) signi-
fies tracing Green’s tensor, as it is necessary to consider all polarization 
degrees of freedom in a photonic system.

Because this work mainly focuses on the topological states local-
ized at system boundaries, in the following calculations and analyses 
we define the surface density of states (SDOS) as the average of the 
LDOS over the surface layer, unless indicated otherwise.

Mathematical origin
Mathematically, our goal is to efficiently find the corner block inverse 
of operator Z in equations (1a) and (1b), and to obtain the SDOS using 
equations (2a) and (2b). When the system exhibits semi-infinite crystal 
periodicity (as shown in Fig. 1a) and each crystal layer is discretized 
identically in the finite-element method46, the operator transforms 
into the following form:

Z =
⎛
⎜⎜⎜
⎝

Z0,0 Z0,1
Z1,0 Z0,0 Z0,1

⋱ ⋱ ⋱

⎞
⎟⎟⎟
⎠

(3)

which is known as the block-Toeplitz (block-cyclic) tridiagonal matrix19. 
Here, diagonal block Zm,m is the intra-coupling within the mth layer, and 
the off-diagonal block Zm,m+1/Zm+1,m is the inter-coupling between neigh-
boring layers; these can be expressed as Z0,0 and Z0,1/Z1,0, respectively. 
All these blocks are functions of momenta, considering the periodicity 
in the closed direction (along the surface).

The CRM and TMM are powerful algorithms for inverting the 
structured matrix in equation (3). The CRM is based on iteratively 
inverting an effective coupling matrix for the surface layer, whereas 
the TMM relies on the eigenanalysis of the transfer matrix for a pair 
of neighboring layers. The methods deal only with matrices that are 
the same size or twice the size of Z0,0, rather than the entire matrix Z, 
substantially reducing the computational resources required.

This work aims to demonstrate the applicability of these methods 
to complex photonic and acoustic structures such as those in Fig. 1a–d, 
corresponding to equations (3) to (6), as well as their advantages in 
conveniently investigating novel topological surface states for direct 
experimental comparisons:

efficiency if the Toeplitz property is fully considered. These primar-
ily fall into two categories. One category comprises iterative tech-
niques, such as the cyclic reduction method (CRM)22, and the other 
semi-analytical techniques such as the transfer matrix method (TMM)23. 
Historically, Golub and Hockney first proposed the CRM for the rapid 
calculation of the inverse of a scalar-cyclic operator when solving Pois-
son equations24–26. It was then extended to deal with block-cyclic27 and 
semi-infinite22 systems. Simultaneously, Lee and Joannopoulos put for-
ward a TMM for efficiently inverting the Hamiltonian for Schrödinger 
equations in semi-infinite systems23, which is similar to the core idea 
of the subsequently developed Mobius transformation method28. 
Recently, Colbrook and colleagues proposed another method to rig-
orously compute the surface spectra of semi-infinite systems by using 
rectangular truncations that preserve all couplings between the trun-
cated finite region and the remaining infinite bulk29,30.

These mathematical advances have been successfully transferred 
to studies in electronic systems. For example, CRMs in plane-wave and 
tight-binding bases have been used to calculate the electronic transmis-
sion of carbon nanotubes and semiconductors17,31. Meanwhile, TMMs 
based on tight-binding models have been used to investigate the decay 
of surface states in graphenes32,33 and to image the surface bands of 
superconductors and topological insulators16,34. So far, these methods 
have been widely used to analyze and design the surface properties of 
electronic materials35–37 and have been developed as a powerful tool 
for exploring novel topological phenomena38.

In photonic and acoustic systems, however, the mathemati-
cal advances have not been fully exploited. Although a CRM in a 
finite-element basis has been proposed to calculate the surface states of 
photonic and acoustic topological semimetals39,40, the formulation is lim-
ited to the case of a bare semi-infinite structure. Meanwhile, a TMM based 
on a plane-wave basis has been presented to simulate the wave propaga-
tion in more complex cases such as sandwiched photonic crystals41,42, 
but with such non-localized basis functions it is hard to describe optical 
fields in metallic materials and sound waves in rigid bodies.

In this Article, to address the above limitations, we implement 
the CRM and TMM using finite-element discretization in photonic and 
acoustic systems and provide computational paradigms across a vari-
ety of scenarios, including a bare semi-infinite crystal, a semi-infinite 
crystal with a surface defect, two semi-infinite crystals interfaced with 
each other, and two semi-infinite crystals with an interface defect. We 
demonstrate the utility of our approach by calculating the surface state 
spectra of gyromagnetic photonic crystals, valley photonic crystals, 
spin-Hall acoustic crystals and the corner state spectra of quadrupole 
photonic crystals, and compare the differences in the computational 
efficiency and accuracy of the two methods.

Results
Green’s functions and local density of states
Green’s functions in photonic (equation (1a)) and acoustic (equation 
(1b)) systems can be defined as the solutions of the wave equations for 
a point source:

[∇ × μ−1(r) ⋅ ∇ × −ω2ε(r)]⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
Z(r;ω)

G (r, r′;ω) = Iδ(r − r′) (1a)

[∇ ⋅ ρ−1(r)∇ + ω2K−1(r)]⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
Z(r;ω)

G (r, r′;ω) = δ(r − r′) (1b)

where μ(r), ε(r), ρ(r) and K(r) are the permeability, permittivity, mass 
density and bulk modulus at location r, respectively. I is a 
three-component unit tensor and δ(r − r′) is the Dirac’s delta source 
at r′. For simplicity, we write the above equations as ZG = I, where Z 
combines the differential operators and material parameters, and G is 
Green’s function.

The local density of states (LDOS) describes the spatial distribution 
of the intensity of a single-particle eigenstate, and can be calculated 
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Cyclic reduction method
Here we introduce the CRM in the context of photonics and acoustics. 
First, let us consider a simple case—a general semi-infinite crystal—as 
shown in Fig. 1a. To solve for the surface Green’s function G0,0, we now 
expand equations (1a) and (1b) in a block manner according to equation 
(3), which gives a series of chain equations:

−ζ0Gm,0 = α0Gm+1,0 + β0Gm−1,0, m ≥ 1, (7a)

−ζs0G0,0 = α0G1,0 − I (7b)

where

α0 = Z0,1, β0 = Z1,0, ζ0 = Z0,0, (8a)

ζs0 = Z0,0 (8b)

The superscript s here is used to denote surface quantities. Next, we 
remove the odd-layer Green’s functions repeatedly using Gaussian 
elimination, and equations (7a,7b) and (8a,8b) are transformed into 
the following forms after i iterations:

−ζiG2im,0 = αiG2i(m+1),0 + βiG2i(m−1),0, m ≥ 1, (9a)

−ζsi G0,0 = αiG2i ,0 − I (9b)

where

αi = αi−1(ζi−1)
−1αi−1,

βi = βi−1(ζi−1)
−1βi−1,

ζi = ζi−1 − αi−1(ζi−1)
−1βi−1 − βi−1(ζi−1)

−1αi−1,

(10a)

ζsi = ζsi−1 − αi−1(ζi−1)
−1βi−1 (10b)

Here, equations (9a,9b) and (10a,10b) define an effective eigenma-
trix that builds connections between the layers at intervals of 2i. As 
the iterations proceed, the distance between those layers increases 
exponentially, and the corresponding inter-couplings (αi and βi) 
decay exponentially to zero due to the inclusion of a global loss (η in 
equations (2a,2b)).

Finally, the surface Green’s function G0,0 decouples with the bulk 
one G2i ,0 in equation (9b), and we achieve its approximation:

G0,0 = lim
i→∞

(ζsi )
−1

(11)

This, in turn, allows for the derivation of the SDOS through 
equations (2a,2b).

Aside from the bare semi-infinite scenario described above, the 
CRM can also handle other more complicated situations, such as (line 
defects between) heterostructures, as shown in Fig. 1b–d. Their asso-
ciated pseudo-codes are provided in the Supplementary section 1 
(Supplementary algorithms 2–4).

a b

c d
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Fig. 1 | Various photonic or acoustic crystal structures that support 
topological surface states. The structure is divided into layers along the 
direction perpendicular to the surface indicated by index m. Zm,m is the 
intra-coupling matrix within a single layer, and Zm,m+1 and Zm+1,m are the inter-
coupling matrices between two nearest-neighbor layers. Z̄  represents the 

coupling matrix in the opposite direction. a, A bare semi-infinite crystal 
terminated by a perfect electric conductor (PEC)/hard wall. b, A semi-infinite 
coated crystal terminated by a PEC/hard wall. c, Two different semi-infinite 
crystals interfaced with each other. d, Two different semi-infinite crystals 
separated by another crystal slab.
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Transfer matrix method
Complementary to the CRM, we can use the TMM to derive the SDOS. 
This has higher accuracy, but at the cost of computational speed. Here 
we also choose a bare semi-infinite structure as an example. First, we 
relate the Green’s functions of each layer by introducing a transfer 
matrix T, which also corresponds to equations (7a,7b):

(
Gm+1,0

Gm,0
) = Tm (

G1,0
G0,0

) , m ≥ 1, (12a)

−Z0,0G0,0 = Z0,1G1,0 − I (12b)

with

T = (
−Z−10,1Z0,0 −Z−10,1Z1,0

I 0
) (13)

Next, we rewrite equation (12a) in the following form:

(
Gm+1,0

Gm,0
) = SΛm [S−1 (

G1,0
G0,0

)] (14)

where Λ is a diagonal matrix and S is a full matrix consisting of all the 
eigenvalues and eigenvectors of T, respectively:

TS = SΛ (15)

On analyzing equation (14), it becomes imperative to eliminate 
the eigenvalues of Λ with moduli greater than 1 to avoid divergence in 
the Green’s functions (Λm = ∞). Consequently, the term enclosed within 
the square brackets must satisfy the following condition:

S−1 (
G1,0
G0,0

) = (
C

0
) (16)

where C is a constant matrix, 0 is a zero matrix, and their positions 
correspond to those of eigenvalues with moduli less than 1 and greater 
than 1 in Λ, respectively. S can then also be arranged as a partition matrix 
corresponding to the same eigenvalue distribution in Λ:

S = (
S2 S4
S1 S3

) (17)

Substituting equation (17) into equation (16), we have a relationship 
between the surface Green’s function G0,0 and the bulk one G1,0:

(
G1,0
G0,0

) = S(
C

0
) = (

S2C

S1C
)

⇒ G1,0 = S2S−11 G0,0

(18)

Finally, combining equation (18) with equation (12b), we obtain 
an explicit expression for the surface Green’s function:

G0,0 = (Z0,0 + Z0,1S2S−11 )−1 (19)

The SDOS for the semi-infinite system can be accordingly derived via 
equations (2a) and (2b).

One potential difficulty may arise when the inverse of the 
inter-coupling matrix Z0,1 in equation (13) does not exist. To 

overcome the problem, one can decompose the transfer matrix in the 
following way:

T = T−11 T2 = (
0 I

−Z0,1 0
)
−1

(
I 0

Z0,0 Z1,0
) (20)

and transform the standard eigenvalue problem (equation (15)) into a 
generalized eigenvalue problem to find the eigensolutions of T (ref. 47).

The detailed pseudo-codes for using the TMM to handle other 
complex structures, as shown in Fig. 1b–d, are summarized in Supple-
mentary section 1 (Supplementary algorithms 6 to 8).

Numerical examples
To showcase the applicability of the CRM and TMM in different com-
plex scenarios, we selected four representative photonic structures 
(Fig. 2a,d,g,j) for verification, which correspond to the four cases 
illustrated in Fig. 1a–d. A further three structures are also studied to 
demonstrate that the developed methodology is equally effective 
for (1) semi-infinite material/media boundaries (Fig. 3a); (2) acoustic 
systems (Fig. 3d); and (3) higher-order topological systems (Fig. 3g). 
For all of these seven examples, we assume continuous translational 
invariance along the z direction with wavevector component kz = 0, and 
introduce the same imaginary frequency η = ω/1,000 into the original 
Hermitian systems for proper broadening of the SDOS. Details of these 
examples are provided in the Methods.

From the results presented in Figs. 2 and 3, it is evident that effi-
cient calculation of the SDOS offers three distinct advantages that 
complement surface band calculations. First, in the SDOS spectra, 
the bulk states become genuinely continuous, while the surface states 
remain discrete, allowing for a clear visualization of the evolution of the 
surface states, and, in particular, their behaviors within the continuum 
in frequency–momentum space. Second, the topological states of a 
single well-defined surface can be obtained directly from the SDOS, 
mitigating the need to inspect the individual wavefunctions of surface 
bands to sort out localization on different surfaces. Third, the efficient 
calculation of SDOS spectra has an experimental advantage: they can 
be directly compared with observables in near-field scanning experi-
ments in both photonics and acoustics.

Computing accuracy and efficiency
Both the CRM and TMM can effectively obtain the surface Green’s 
function due to the block-cyclic tridiagonal form of matrix Z in such 
periodic systems. In the following, we will evaluate and compare the 
strengths and weaknesses of the CRM and TMM, particularly in terms 
of computing accuracy and efficiency.

In terms of computational accuracy, the TMM provides higher 
precision than the CRM. As the TMM directly provides an exact expres-
sion for the surface Green’s function (equation (19)), its results are more 
accurate than those of the iterative approach used by the CRM (equa-
tion (11)). To illustrate this, we take a one-dimensional (1D) photonic 
crystal with inversion symmetry48 as an example to analyze the accuracy 
and convergence of the CRM, TMM and conventional supercell method 
(SCM) (Fig. 4). However, it is important to note that the introduction 
of imaginary frequency η may lead to singularities in the system (such 
as exceptional points). In this case, T becomes ill-conditioned, which 
could result in catastrophic round-off error amplification, especially at 
the edges of the energy bands. One possible approach is to reconstruct 
the relationship between the Green’s functions and LDOS (equations 
(2a,2b)) at exceptional points49 so that the aforementioned efficient 
algorithms can be utilized as usual.

In terms of computational memory, the CRM is more advanta-
geous than the TMM. The TMM’s memory consumption primarily 
comes from the eigenanalysis of matrix T, whereas that of the CRM 
originates from inverting the self-coupling matrix ζs. Notably, T has 
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twice the degrees of freedom as ζs (equations (8b) and (13)), leading 
to larger memory usage in the TMM. As shown in Table 1, for the same 
degrees of freedom, the TMM’s memory consumption is approximately 
four times that of the CRM.

In terms of computation time, the CRM is again more advanta-
geous. First, similar to the principle of memory consumption, the time 
consumption of the TMM primarily stems from the eigenanalysis of 
matrix T, whereas that of the CRM mainly comes from the inversion of 
the coupling matrix ζs. As T has twice the degrees of freedom as ζs, the 
time consumption of the TMM is greater. Second, although the time 

complexities for both the eigenanalysis and inversion of equivalent 
matrices are O(N3), the proportionality constant for eigenanalysis is 
larger, leading to a longer computation time for the TMM. Table 1 also 
presents the computation time required for both methods, showing 
that the TMM takes substantially longer than the CRM for the same 
number of degrees of freedom. It should be noted that the CRM time 
in Table 1 also has to take into account the number of iterations. Select-
ing an appropriate imaginary frequency η can effectively reduce the 
iterations, but at the expense of decreased computational accuracy, 
as discussed in ref. 40.
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Fig. 2 | Topological surface states of representative surface configurations in 
photonic crystals. a–l, Topological surface states of a PEC domain wall (a–c), 
 PEC sandwich (d–f), crystal domain wall (g–i) and crystal sandwich (j–l).  
a, Normalized mode profile Ez (electric field) of a gyromagnetic photonic crystal 
terminated by a PEC at a normalized frequency of 0.64c/a, corresponding to the 
eigenfrequency circled in red in b. b, Band structure of a 12-cell gyromagnetic 
photonic crystal slab with two PEC boundaries. c, SDOS spectrum of a semi-
infinite gyromagnetic photonic crystal with a PEC boundary. d, Normalized 
mode profile Ez of a gyromagnetic photonic crystal coated with a crystal slab and 
terminated by a PEC at a normalized frequency of 0.61c/a, corresponding to the 
eigenfrequency circled in red in e. e, Band structure of a 13-cell gyromagnetic 
photonic crystal slab with two PEC boundaries. f, SDOS spectrum of a semi-

infinite gyromagnetic photonic crystal with a PEC boundary. g, Normalized 
mode profile Hz (magnetic field) of a valley photonic crystal formed by two semi-
infinite crystals face to face at a normalized frequency of 0.45c/a, corresponding 
to the eigenfrequency circled in red in h. h, Band structure of a 24-cell valley 
photonic crystal slab with two PEC boundaries. i, SDOS spectrum of a valley 
photonic crystal extending infinitely on both sides. j, Normalized mode profile 
Hz of a valley photonic crystal formed by two semi-infinite crystals separated by 
another crystal slab at a normalized frequency of 0.26c/a, corresponding to the 
eigenfrequency circled in red in k. k, Band structure of a 25-cell valley photonic 
crystal slab with two PEC boundaries. l, SDOS spectrum of a valley photonic 
crystal extending infinitely on both sides.
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systems (d–f) and higher-order topological systems (g–i). a, Normalized mode 
profile Ez of a bare semi-infinite gyromagnetic photonic crystal exposed to air at 
a normalized frequency of 0.27c/a, corresponding to the eigenfrequency circled 
in red in b. b, Band structure of a 12-cell gyromagnetic photonic crystal slab with 
a PEC and an open boundary. c, SDOS spectrum of a gyromagnetic photonic 
crystal with an open boundary. d, Normalized mode profile p (sound pressure) 
of a spin-Hall acoustic crystal formed by two semi-infinite crystals face to face at 
a normalized frequency of 0.59c/a, corresponding to the eigenfrequency circled 

in red in e. e, Band structure of a spin-Hall acoustic crystal slab with two hard wall 
boundaries. f, SDOS spectrum of a spin-Hall acoustic crystal extending infinitely 
on both sides. g, Normalized mode profile Ez of a quadrupole topological 
photonic crystal formed by two semi-infinite crystals face to face at a normalized 
frequency of 0.3599, corresponding to the eigenfrequency circled in red in h. h, 
Corner eigenvalue spectrum of a finite 10 × 10 photonic crystal enclosed by PEC 
boundaries with a thin air gap of 0.28a in between. i, Corner density of states 
spectrum of a quadrupole photonic crystal extending infinitely along primitive 
vectors a and b but terminated by PECs along the a + b direction.

...
...
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Fig. 4 | Accuracy and convergence analyses of the CRM, TMM and SCM. a, A 1D 
photonic crystal with inversion symmetry that supports topological interface 
states. The excitation and receiver are both located at the same point on the 
interface. b, SDOS for a topological state (at the normalized frequency of 0.2425) 
obtained from different methods. The imaginary frequency is taken as η = ω/100 
for finite line broadening. The number of iterations i in the CRM and the number 
of unit cells l (on one side) in the SCM are both set to 2, and the unknown N in 

a unit cell is ~2,000. It can be observed that the accuracy of the TMM is higher 
than that of the CRM, and both are superior to the SCM. c, Convergence of the 
different methods. The errors are defined as (SDOSi − SDOSi−1)/SDOS∞ for the 
CRM and (SDOSl − SDOSl−1)/SDOS∞ for the SCM. It can be seen that the error 
decreases exponentially for the CRM and linearly for the SCM, indicating that the 
CRM has better convergence.
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It is worth summarizing the respective advantages of the CRM 
and TMM together with those of the widely used SCM. The CRM is 
most efficient in terms of time and memory consumption. Meanwhile, 
although the SCM has slower convergence and thus requires more sub-
stantial computational resources, it can directly access the eigenmode 
profiles (as shown in Figs. 2a,d,g,j and 3a,d,g, calculated with the SCM). 
Despite the fact that the TMM consumes more time and memory when 
calculating surface Green’s functions than the CRM, it does, however, 
offers certain other advantages. For example, the intermediate vari-
ables (eigenvalues Λ and eigenvectors S) can be used to construct the 
surface bands (the surface eigenvalues spectrum50).

Discussions
In this Article, we have applied two efficient algorithms for calculation 
of the SDOS in photonic and acoustic crystals, and have investigated 
the corresponding topological phenomena. The CRM focuses on effi-
ciently solving the SDOS by reducing the computational complexity 
using Gaussian elimination, whereas the TMM relies on directly solving 
it through eigenanalysis of a transfer matrix. We have provided numeri-
cal examples of various topological photonic and acoustic crystals to 
demonstrate the utility of these methods.

The key innovation of our work lies in employing finite- 
element-type localized basis functions to discretize wavefunctions in 
continuous optical and acoustic systems, a methodology conceptually 
analogous to tight-binding theory using localized atomic orbitals for 
electrons. Compared to traditional plane-wave expansion methods 
that rely on global basis functions, our approach offers several dis-
tinct advantages. First, it enables the precise modeling of arbitrarily 
complex geometries, such as multiscale structures, through localized 
mesh refinement, whereas plane-wave methods require prohibitively 
high expansion orders to achieve comparable accuracy. Second, it 
effectively handles material systems containing metals or rigid bodies, 
addressing field discontinuities that challenge the numerical stability 
of plane-wave expansions. It also naturally accommodates in-plane 
non-periodic systems, such as finite structures with a PEC or absorbing 
boundaries, without relying on the reciprocal lattice vectors essential 
to plane-wave techniques. With geometric flexibility, material versatil-
ity and non-periodicity compatibility, our computational framework 
provides a robust solution for photonic and acoustic systems beyond 
the constraints of conventional methods. Our method can also be 
extended to other complex systems, including finite-sized structures, 
non-uniform interfaces, nonplanar geometries, moiré superlattices 
and non-Hermitian systems (Supplementary Fig. 1). More detailed 
information is provided in Supplementary section 2.

The finite-element-based CRM and TMM developed in this 
work provide substantial improvements over conventional super-
cell approaches in both computational efficiency and result quality. 
Computationally, the CRM achieves O[N3] complexity by inverting 
the self-coupling matrix of a single unit cell, whereas the TMM reaches 
O[(2N)3] complexity through eigenvalue analysis of a doubled unit cell. 
Both methods offer substantial computational savings compared to 
supercell methods, which scale as O[(lN)3] (with l ≫ 2 denoting supercell 
size). Physically, these methods directly handle semi-infinite systems, 
allowing explicit extraction of surface-specific properties such as 
SDOS spectra. In contrast, supercell approaches model a finite-sized 
structure with two surfaces, requiring careful examination of the 
eigenmodes to exclude states localized at the opposing boundary. 
Traditional boundary treatments such as perfectly matched layers 
face challenges because the surface waves are non-radiated and hard to 
absorb, necessitating specialized techniques such as complex nonlin-
ear coordinate transformations51 and adiabatic absorbers52 to address 
the problems in periodic systems. Furthermore, because our SDOS 
spectrum retains intensity information, it enables a clear distinction 
between surface states and bulk continua and facilitates direct tracking 
of momentum-space evolution for surface states, thereby ensuring 
quantitative alignment with near-field scanning experimental data.

Our methods may still face challenges in ultra-large-scale simula-
tions, especially for unit cells with millions of degrees of freedom, as 
in moiré superlattices with small twist angles. In such cases, although 
our methods can still reduce computational cost, matrix inversion 
and diagonalization could still consume considerable resources. A 
useful future direction is parallelization. In our formulation, each SDOS 
data point is independent in frequency–momentum space, enabling 
straightforward task decomposition across central processing units or 
nodes. Moreover, graphics processing unit architectures can also be 
very well-suited to this problem due to their massive parallelism and 
high memory bandwidth, which may offer further speed-ups.

Methods
Simulation environment
All simulations in this study including performance benchmarks and 
numerical examples, were conducted using COMSOL Multiphysics 
with a MATLAB scripting interface. It should be noted that the COMSOL 
in this work is primarily used for mesh generation, which can also be 
performed by other open-source finite-element meshing tools. The 
workflow begins by constructing a supercell structure in the COMSOL 
modeling environment and extracting its finite-sized eigenmatrix Z 
through MATLAB for traditional SCM validation. This matrix is then 
partitioned into diagonal self-coupling and off-diagonal inter-coupling 
submatrices to implement both the CRM and TMM. All performance 
metrics (computational time, accuracy, memory usage) are thus 
evaluated under identical model conditions—including consistent 
geometries and meshing schemes—to ensure rigorous and unbiased 
comparison of the methods.

CRM and TMM for coated, hetero- and sandwiched structures
In addition to the methods for bare semi-infinite structures presented 
in the main text, we extend our analysis to complex configurations. 
Here we demonstrate this extension through the case of sandwiched 
structures (Fig. 1d), with the following discussion providing compre-
hensive methodological details.

In the CRM (Supplementary algorithm 4), we define α0, β0 and ζ0 
as the bulk couplings of a crystal on one side, and ᾱ0, β̄0 and ̄ζ0 as the 
bulk couplings on the other side. We also take αs

0, βs
0, ᾱs

0, β̄s
0 and ζs0 as the 

interface couplings for the sandwiched crystal slab. Here, the overline 
superscript s denotes quantities in the opposite direction and at the 
interface, respectively, and subscript i indicates iteration steps. We can 
then independently iterate the bulk couplings in both directions, and 
update the interface couplings according to those of the bulk. Finally, 

Table 1 | A comparison of the three methods in terms of 
memory costs, given by complexities O[N2], O[(2N)2] and 
O[(lN)2], and time costs, given by complexities O[N3], 
O[(2N)3], O[(lN)3]

Unit cell 
unknowns (N)

500 1,000 1,500 2,000

Memory for  
CRM (Mb)

3.82 15.29 34.4 61.16

Memory for  
TMM (Mb)

15.23 61.04 139.25 244.36

Memory for  
SCM (Mb)

309.43 1,238.22 2,785.78 4,953.98

Time for CRM (s) 0.006 × 4 0.036 × 4 0.11 × 4 0.26 × 4

Time for TMM (s) 0.63 5.02 18.27 45.83

Time for SCM (s) 2.34 21.31 69.94 167.71

The performance tests were conducted in MATLAB on an Intel Core i7-12700 CPU (12 cores, 
20 threads). The CRM required four iterations, and the SCM utilized nine unit cells, achieving 
a convergence error of 1 × 10−4 when η = ω/100. 
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the surface Green’s function can be found through ζsi  if the convergence 
residual (ζsi − ζsi−1)/(ζ

s
i−1) is small enough.

In the TMM (Supplementary algorithm 8), we define T1, T2 and T̄1, 
T̄2 as the transfer matrices of crystals on two sides. We can then perform 
generalized eigenanalyses of the two pairs of transfer matrices inde-
pendently. By ordering the corresponding eigenvalues and eigenvec-
tors, and combining this with the equation of Green’s function at the 
interface, we can also find the exact solution of the surface 
Green’s function.

Details of numerical examples
The first example is a 2D gyromagnetic photonic crystal with a PEC 
cladding, which exhibits topological surface states in the second band-
gap. Figure 2a presents a schematic of the structure, where the radii of 
the dielectric pillars are 0.13a, the relative permittivity εr is 13 and rela-

tive permeability μr is (
1 −0.4i 0
0.4i 1 0
0 0 1

). We calculate the surface band 

structure for a 12-cell crystal slab and the SDOS for a bare semi-infinite 
crystal, as shown in Fig. 2b,c, respectively. It can be clearly seen that 
the surface states become more pronounced against the bulk states, 
and only the chiral state on a single surface is retained in the 
SDOS spectrum.

Our second example is again a 2D gyromagnetic photonic crystal, 
but with a surface modification and a PEC cladding, which features 
topological slow light in the second bandgap. Figure 2d presents a 
schematic of the structure, where the radii of the dielectric pillars are 

0.15a, and the relative permeability μr is (
0.83 −0.42i 0
0.42i 0.83 0
0 0 1

). The relative 

permittivity of the surface pillars varies periodically along the x direc-
tion in a sequence of εr = {15, 15, 25}, whereas that of the bulk pillars is 
uniform at εr = 15. The surface band structure for a 13-cell crystal slab 
and the SDOS for a semi-infinite coated crystal are calculated and 
shown in Fig. 2e,f, respectively. It can be observed that only topological 
states with negative group velocities are present in the SDOS spectrum, 
and they exhibit minimal group velocities at the Brillouin 
zone boundary.

The third example is a 2D valley photonic crystal heterostruc-
ture, which supports valley-dependent surface states in the second 
bandgap53. Figure 2g provides a schematic of the structure, which is 
composed of two types of dielectric pillar with opposite orientations. 
The pillar has a side length of 0.615a and a chamfer length of 0.11a at 
the corner, with a relative permittivity εr of 13 and permeability μr of 1. 
We calculate the surface band structure for a 24-cell crystal slab and 
the SDOS for a heterostructure infinitely extending into both bulks, 
as shown in Fig. 2h,i, respectively. It becomes apparent that a pair of 
topological states with opposite group velocities are locked in different 
valleys in the SDOS spectrum.

The fourth example is again a valley photonic crystal heterostruc-
ture, but with a line defect sandwiched at the interface, which supports 
valley-dependent slow light in the first bandgap54. Figure 2j shows a 
schematic of the structure, which consists of three types of dielectric 
crystal slab. The crystals have a background material relative permit-
tivity εr of 11.56 and permeability μr of 1, with the long and short sides 
of the air pillars being 1.3a/√3 and 0.7a/√3. The surface band structure 
for a 25-cell crystal slab and the SDOS for a sandwiched structure 
extending infinitely in both directions are calculated and shown in 
Fig. 2k,l, respectively. It can be intuitively observed that only the con-
fined modes of the interface exist in the SDOS spectrum, and it shows 
slow group velocities near the Brillouin zone edge.

The fifth example is a 2D gyromagnetic photonic crystal exposed 
to air, which has topological surface states in the first bandgap55. 
Figure 3a presents a schematic of the structure, and the radii of the 
dielectric pillars are 0.2a, with relative permittivity εr of 15.26 and 

permeability μr of (
0.80 −0.72i 0
0.72i 0.80 0
0 0 1

) . We calculate the surface band 

structure for a 12-cell crystal slab and the SDOS for a bare semi-infinite 
crystal interfaced with air, as shown in Fig. 3b,c, respectively. It is noted 
that only the state of the air-crystal interface remains in the SDOS 
spectrum. Moreover, information absent in the surface band calcula-
tion can be found in the SDOS spectrum—when the topological surface 
band enters the light cone, it couples to the radiation continuum (in 
the x−y plane), resulting in their hybridization and blurring of the SDOS 
of the surface band.

The sixth example is a 2D spin-Hall acoustic crystal, which has 
pseudospin-dependent topological surface states in the second 
bandgap56. Figure 3d presents a schematic of the structure, and the 
radii of the rigid bodies on the two sides are 0.3a and 0.45a. We cal-
culate the surface band structure for a 24-cell crystal slab and the 
SDOS for a structure extending infinitely on both sides, as shown in 
Fig. 3e,f, respectively. It can be seen from the SDOS spectrum that two 
pseudospin-locked counterpropagating acoustic modes are equally 
excited at the same interface.

The last example is a 2D gyromagnetic photonic crystal that sup-
ports quadrupole corner states. Figure 3g presents a schematic of the 
photonic crystal structure, as discussed in ref. 57. The dielectric pillars 
have a side length of 0.17a, with a relative permittivity εr of 15 and per-

meability μr of (
14 −12.4i 0
12.4i 14 0
0 0 1

). The structure extends infinitely along 

the primitive vectors a and b but is terminated by the PEC along the 
a + b direction. By redefining finite-sized supercells along this 
finite-sized direction as effective unit cells (inside the dashed lines in 
Fig. 3g), we can apply the algorithms designed for a sandwiched struc-
ture to calculate the SDOS and further derive the corner DOS. We cal-
culate the corner eigenvalue spectrum for 10 × 10 unit cells and the 
corner DOS for the bi-semi-infinite structure, which are shown in 
Fig. 3h,i, respectively. The corner state can be clearly observed within 
a bandgap in the corner DOS spectrum, which aligns well with the 
eigenvalue spectrum.

Data availability
All data in this study were generated by running our codes (ref. 58). 
Source data are provided with this paper.

Code availability
Source codes associated with this manuscript are available on Zenodo 
(ref. 58) and via GitHub at https://github.com/YixinSha/SDOS.
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